Volume 6 Issue 1
Jan.  2013
Turn off MathJax
Article Contents
Lin LI, Wei ZHU, Ting-ting WANG, Yong-gang LUO, Feng-lan CHEN, Xiao TAN. 2013: Effect of fluid motion on colony formation in Microcystis aeruginosa. Water Science and Engineering, 6(1): 106-116. doi: 10.3882/j.issn.1674-2370.2013.01.008
Citation: Lin LI, Wei ZHU, Ting-ting WANG, Yong-gang LUO, Feng-lan CHEN, Xiao TAN. 2013: Effect of fluid motion on colony formation in Microcystis aeruginosa. Water Science and Engineering, 6(1): 106-116. doi: 10.3882/j.issn.1674-2370.2013.01.008

Effect of fluid motion on colony formation in Microcystis aeruginosa

doi: 10.3882/j.issn.1674-2370.2013.01.008
Funds:  This work was supported by the National Natural Science Foundation of China (Grant No. 50979028) and the Special Fund of Research for Public Welfare Industry of the Ministry of Water Resources of China (Grant No. 200801065).
More Information
  • Corresponding author: Lin LI
  • Received Date: 2011-10-08
  • Rev Recd Date: 2012-03-07
  • Microcystis aeruginosa, generally occurring in large colonies under natural conditions, mainly exists as single cells in laboratory cultures. The mechanisms involved in colony formation in Microcystis aeruginosa and their roles in algal blooms remain unknown. In this study, based on previous research findings that fluid motion may stimulate the colony formation in green algae, culture experiments were conducted under axenic conditions in a circular water chamber where the flow rate, temperature, light, and nutrients were controlled. The number of cells of Microcystis aeruginosa, the number of cells per colony, and the colonial characteristics in various growth phases were observed and measured. The results indicated that the colony formation in Microcystis aeruginosa, which was not observed under stagnant conditions, was evident when there was fluid motion, with the number of cells per largest colony reaching 120 and the proportion of the number of cells in colonial form to the total number of cells and the mean number of cells per colony reaching their peak values at a flow rate of 35 cm/s. Based on the analysis of colony formation process, fluid motion stimulates the colony formation in Microcystis aeruginosa in the lag growth phase, while flushes and disaggregates the colonies in the exponential growth phase. The stimulation effect in the lag growth phase may be attributable to the involvement of fluid motion in a series of physiological processes, including the uptake of trace elements and the synthesis and secretion of polysaccharides. In addition, the experimental groups exhibiting typical colonial characteristics in the lag growth phase were found to have higher cell biomass in the later phase.

     

  • loading
  • Becker, S. 2010. Biotic factors in induced defence revisited: cell aggregate formation in the toxic cyanobacterium Microcystis aeruginosa PCC 7806 is triggered by spent Daphnia medium and disrupted cells. Hydrobiologia, 644(1), 159-168. [doi: 10.1007/s10750-010-0109-y]
    Bolch, C. J. S., and Blackburn, S. I. 1996. Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. Journal of Applied Phycology, 8(1), 5-13. [doi: 10.1007/BF02186215]
    Burkert, U., Hyenstrand, P., Drakare, S., and Blomqvist, P. 2001. Effects of the mixotrophic flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa. Aquatic Ecology, 35(1), 11-17. [doi: 10.1023/ A:1011454313607]
    Guo, L. 2007. Doing battle with the green monster of Taihu Lake. Science, 317(5842), 1166. [doi: 10.1126/science.317.5842.1166]
    Hondzo, M., Kapur, A., and Lembi, C. A. 1998. The effect of small-scale fluid motion on the green alga Scenedesmus quadricauda. Hydrobiologia, 364(2-3), 225-235. [doi: 10.1023/A:1003235504219]
    Hondzo, M., and Lyn, D. 1999. Quantified small-scale turbulence inhibits the growth of a green alga. Freshwater Biology, 41(1), 51-61. [doi: 10.1046/j.1365-2427.1999.00389.x]
    Hosaka, K., Hioki, T., Furuune, H., and Tanishita, K. 1995. Augmentation of microalgae growth due to hydrodynamic activation. Energy Conversion and Management, 36(6-9), 725-728. [doi:10.1016/0196- 8904(95)00107-O]
    Jackson, G. A., and Lochmann, S. 1993. Modeling coagulation of algae in marine ecosystems. Buffle, J., and van Leeuwen, H. P., eds., Environmental Particles, Vol. 2, 387-414. Boca Raton: Lewis Publishers.
    Joung, S. H., Kim, C. J., Ahn, C. Y., Jang, K. Y., Boo, S. M., and Oh, H. M. 2006. Simple method for a cell count of the colonial cyanobacterium, Microcystis sp. The Journal of Microbiology, 44(5), 562-565.
    Kiørboe, T., Andersen, K. P., and Dam, H. G. 1990. Coagulation efficiency and aggregate formation in marine phytoplankton. Marine Biology, 107(2), 235-245. [doi: 10.1007/BF01319822]
    Lampert, W., Rothhaupt, K. O., and von Elert, E. 1994. Chemical induction of colony formation in a green alga (Scenedesmus acutus) by grazers (Daphnia). Limnology and Oceanography, 39(7), 1543-1550.
    Lürling, M. 2003. Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. International Journal of Limnology, 39(2), 85-101. [doi: 10.1051/limn/2003014]
    Moore, B. G., and Tischer, R. G. 1964. Extracellular polysaccharides of algae: effects on life-support systems. Science, 145(3632), 586-587. [doi: 10.1126/science.145.3632.586]
    Qin, B. Q., Hu, W. P., Chen, W. M., Ji, J., Fan, C. X., Chen, Y. W., Gao, X. Y., Yang, L. Y., Gao, G., Huang, W. Y., et al. 2000. Studies on the hydrodynamic processes and related factors in Meiliang Bay, northern Taihu Lake, China. Journal of Lake Sciences, 12(4), 327-334. (in Chinese)
    Reynolds, C. S., and Jaworski, G. H. M. 1978. Enumeration of natural Microcystis populations. European Journal of Phycology, 13(3), 269-277. [doi: 10.1080/00071617800650331]
    Reynolds, C. S., Jaworski, G. H. M., Cmiech, H. A., and Leedale, G. F. 1981. On the annual cycle of the blue-green alga Microcystis aeruginosa Kütz. Emend. Elenkin. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 293(1068), 419-477. [doi: 10.1098/rstb.1981.0081]
    Reynolds, C. S. 2007. Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment. Hydrobiologia, 578(1), 37-45. [doi: 10.1007/s10750-006-0431-6]
    Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., and Stanier, R. Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111(1), 1-61. [doi:10.1099/ 00221287-111-1-1]
    Ruiz, J., Macías, D., and Peters, F. 2004. Turbulence increases the average settling velocity of phytoplankton cells. Proceedings of the National Academy of Sciences, 101(51), 17720-17724. [doi:10.1073/pnas. 0401539101]
    Sangar, V. K., and Dugan, P. R. 1972. Polysaccharide produced by Anacystis nidulans: its ecological implication. Applied and Environmental Microbiology, 24(5), 732-734.
    Schapira, M., Seuront, L., and Gentilhomme, V. 2006. Effects of small-scale turbulence on Phaeocystis globosa (Prymnesiophyceae) growth and life cycle. Journal of Experimental Marine Biology and Ecology, 335(1), 27-38. [doi: 10.1016/j.jembe.2006.02.018]
    Shen, H., Niu, Y., Xie, P., Tao, M., and Yang, X. 2011. Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshwater Biology, 56(6), 1065-1080. [doi: 10.1111/j.1365-2427.2010.02551.x]
    Wang, Y. W., Zhao, J., Li, J. H., Li, S. S., Zhang, L. H., and Wu, M. 2011. Effects of calcium levels on colonial aggregation and buoyancy of Microcystis aeruginosa. Current Microbiology, 62(2), 679-683. [doi: 10.1007/s00284-010-9762-7]
    Welker, M., Brunke, M., Preussel, K., Lippert, I., and von Dohren, H. 2004. Diversity and distribution of Microcystis (Cyanobacteria) oligopeptide chemotypes from natural communities studied by single-colony mass spectrometry. Microbiology, 150(6), 1785-1796. [doi: 10.1099/mic.0.26947-0]
    Yang, Z., Kong, F. X., and Shi, X. L. 2005. Effects of filtered lake water on colony formation and growth rate in Microcystis aeruginosa of different physiological phases. Journal of Freshwater Ecology, 20(3), 425-429. [doi: 10.1080/02705060.2005.9664757]
    Yang, Z., Kong, F. X., Shi, X. L., and Cao, H. S. 2006. Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton. Hydrobiologia, 563(1), 225-230. [doi:10.1007/s10750- 005-0008-9]
    Yang, Z., Kong, F. X., Zhang, M., Yang, Z., Yang, Y., and Qian, S. Q. 2009. Effect of filtered cultures of flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa. International Review of Hydrobiology, 94(2), 143-152. [doi: 10.1002/iroh.200811103]
    Zhang, M., Shi, X. L., Jiang, L. J., Yang, L. Y., Gao, G., and Qin, B. Q. 2002. Effects of two exogenous phosphorus and shake on the growth of Microcystis aeruginosa. Chinese Journal of Applied and Environmental Biology, 8(5), 507-510. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2198) PDF downloads(2929) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return