Volume 6 Issue 3
Jul.  2013
Turn off MathJax
Article Contents
Min-min WANG, Li WANG. 2013: Synthesis and characterization of carboxymethyl cellulose/organic montmorillonite nanocomposites and  its adsorption behavior for Congo Red dye. Water Science and Engineering, 6(3): 272-282. doi: 10.3882/j.issn.1674-2370.2013.03.004
Citation: Min-min WANG, Li WANG. 2013: Synthesis and characterization of carboxymethyl cellulose/organic montmorillonite nanocomposites and  its adsorption behavior for Congo Red dye. Water Science and Engineering, 6(3): 272-282. doi: 10.3882/j.issn.1674-2370.2013.03.004

Synthesis and characterization of carboxymethyl cellulose/organic montmorillonite nanocomposites and  its adsorption behavior for Congo Red dye

doi: 10.3882/j.issn.1674-2370.2013.03.004
Funds:  This work was supported by the Special Fund for National Forestry Industry Scientific Research in the Public Interest of China (Grant No. 201104004), the Natural Science Foundation of China (Grant No. 20867004), and the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region.
More Information
  • Corresponding author: Li WANG
  • Received Date: 2012-04-13
  • A series of carboxymethyl cellulose/organic montmorillonite (CMC/OMMT) nanocomposites with different weight ratios of carboxymethyl cellulose (CMC) to organic montmorillonite (OMMT) were synthesized under different conditions. The nanocomposites were characterized by the Fourier transform infrared (FT-IR) spectrophotometer, X-ray diffraction (XRD) method, transmission electron microscope (TEM), scanning electron microscope (SEM), and thermal gravimetric (TG) analysis. The results showed that the introduction of CMC may have different influences on the physico-chemical properties of OMMT and intercalated-exfoliated nanostructures were formed in the nanocomposites. The effects of different reaction conditions on the adsorption capacity of samples for Congo Red (CR) dye were investigated by controlling the amount of hexadecyl trimethyl ammonium bromide (CTAB), the weight ratio of CMC to OMMT, the reaction time, and the reaction temperature. Results from the adsorption experiment showed that the adsorption capacity of the nanocomposites can reach 171.37 mg/g, with the amount of CTAB being 1.0 cation exchange capacity (CEC) of MMT, the weight ratio of CMC to OMMT being 1?1, the reaction time being 6 h, and the reaction temperature being 60℃. The CMC/OMMT nanocomposite can be used as a potential adsorbent to remove CR dye from an aqueous solution.

     

  • loading
  • Ahmad, A. A., Hameed, B. H., and Aziz, N. 2007. Adsorption of direct dye on palm ash: Kinetic and equilibrium modeling. Journal of Hazardous Materials, 141(1), 70-76.
    [doi:10.1016/j.jhazmat. 2006.06.094]
    Akhtar, N., Iqbal, J., and Iqbal, M. 2004. Enhancement of Lead(II) biosorption by microalgal biomass immobilized onto Loofa (Luffa cylindrica) sponge. Engineering in Life Sciences, 4(2), 171-178.
    Bao, Y., Ma, J. Z., and Li, N. 2011. Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydrate Polymers, 84(1), 76-82.
    [doi:10. 1016/j.carbpol.2010.10.061]
    Churchman, G. J., Gates, W. P., Theng, B. K. G., and Lagaly, G. 2006. Clays and clay minerals for pollution control. Bergaya, F., Theng, B. K. G., and Lagaly, G., eds., Handbook of Clay Science, Vol. 1, 625-675. Amsterdam: Elsevier.
    De Melo, J. C. P., Da Silva Filho, E. C., Santana, S. A. A., and Airoldi, C. 2009. Maleic anhydride incorporated onto cellulose and thermodynamics of cation-exchange process at the solid/liquid interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 346(1-3), 138-145.
    [doi:10.1016/j.colsurfa.2009. 06.006]
    El Mouzdahir, Y., Elmchaouri, A., Mahboub, R., Gil, A., and Korili, S. A. 2010. Equilibrium modeling for the adsorption of methylene blue from aqueous solutions on activated clay minerals. Desalination, 250(1), 335-338.
    Fu, X., and Qutubuddin, S. 2001. Polymer-clay nanocomposites: Exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer, 42(2), 807-813.
    Fungaro, D. A., Bruno, M., and Grosche, L. C. 2009. Adsorption and kinetic studies of methylene blue on zeolite synthesized from fly ash. Desalination and Water Treatment, 2(1-3), 231-239.
    Gonzalez-Gutierrez, L. V., and Escamilla-Silva, E. M. 2009. Reactive red azo dye degradation in a UASB bioreactor: Mechanism and kinetics. Engineering in Life Sciences, 9(4), 311-316.
    [doi:10.1002/elsc. 200900036]
    Kahraman, S., Asma, D., Erdemoglu, S., and Yesilada, O. 2005. Biosorption of Copper(II) by live and dried biomass of the white rot fungi Phanerochaete chrysosporium and Funalia trogii. Engineering in Life Sciences, 5(1), 72-77.
    Kittinaovarat, S., Kansomwan, P., and Jiratumnukul, N. 2010. Chitosan/modified montmorillonite beads and adsorption Reactive Red 120. Applied Clay Science, 48(1-2), 87-91.
    Liu, P. 2007. Polymer modified clay minerals: A review. Applied Clay Science, 38(1-2), 64-76.
    [doi:10.1016/ j.clay.2007.01.004]
    Lucas, M. S., and Peres, J. A. 2006. Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes Pigments, 71(3), 236-244.
    Luo, X. B., Zhan, Y. C., Huang, Y. N., Yang, L. X., Tu, X. M., and Luo, S. L. 2011. Removal of water-soluble acid dyes from water environment using a novel magnetic molecularly imprinted polymer. Journal of Hazardous Materials, 187(1-3), 274-282.
    Ngah, W. S. W., Ariff, N. F. M., and Hanafiah, M. A. K. M. 2010. Preparation, characterization, and environmental application of crosslinked chitosan-coated bentonite for tartrazine adsorption from aqueous solutions. Water, Air and Soil Pollution,206(1-4), 225-236.
    Papic, S., Koprivanac, N., Bozic, A. L., and Metes, A. 2004. Removal of some reactive dyes from synthetic wastewater by combined Al(III) coagulation/carbon adsorption process. Dyes and Pigments, 62(3), 291-298.
    Pavlidou, S., and Papaspyrides, C. D. 2008. A review on polymer-layered silicate nanocomposites. Progress in Polymer Science, 33(12), 1119-1198.
    Sinha Ray, S., and Okamoto, M. 2003. Polymer/layered silicate nanocomposites: A review from preparation to processing. Progress in Polymer Science, 28(11), 1539-1641.
    Srinivas, G., Sekar, S., Saravanan, R., and Renganarayanan, S. 2009. Studies on a water-based absorption heat transformer for desalination using MED. Desalination and Water Treatment, 1(1-3), 75-81.
    Wang, L., and Wang, A. Q. 2008. Adsorption behaviors of Congo red on the N,O-carboxymethyl- chitosan/montmorillonite nanocomposite. Chemical Engineering Journal, 143(1-3), 43-50.
    [doi:10.1016/j. cej.2007.12.007]
    Wang, L., Zhang, J. P., and Wang, A. Q. 2011. Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly (acrylic acid)/attapulgite composite. Desalination, 266(1-3), 33-39.
    Wang, W. B., and Wang, A. Q. 2010. Nanocomposite of carboxymethyl cellulose and attapulgite as a novel pH-sensitive superabsorbent: Synthesis, characterization and properties. Carbohydrate Polymers, 82(1-2), 83-91.
    Xu, Y., and Lebrun, R. E. 1999. Treatment of textile dye plant effluent by nanofiltration membrane. Separation Science and Technology, 34(13), 2501-2519.
    Zhao, Q., Qian, J. W., An, Q. F., Gao, C. J., Gui, Z. L., and Jin, H. T. 2009. Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogeneous membranes. Journal of Membrane Science, 333(1-2), 68-78.
    Zollinger, H. 1987. Colour Chemistry: Synthesis, Properties of Organic Dyes and Pigments. New York:   VCH Publishers.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2410) PDF downloads(4468) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return