Volume 6 Issue 4
Oct.  2013
Turn off MathJax
Article Contents
Quan-min BU, Zhan-jun WANG, Xing TONG. 2013: An improved genetic algorithm for searching for  pollution sources. Water Science and Engineering, 6(4): 392-401. doi: 10.3882/j.issn.1674-2370.2013.04.003
Citation: Quan-min BU, Zhan-jun WANG, Xing TONG. 2013: An improved genetic algorithm for searching for  pollution sources. Water Science and Engineering, 6(4): 392-401. doi: 10.3882/j.issn.1674-2370.2013.04.003

An improved genetic algorithm for searching for  pollution sources

doi: 10.3882/j.issn.1674-2370.2013.04.003
Funds:  This work was supported by the Science and Technology Support Program of Jiangsu Province (Grant No. BE2010738), Jiangsu Colleges and Universities Natural Science Foundation Funded Project (Grant No. 08KJB620001), and the Qing Lan Project of Jiangsu Province.
 
More Information
  • Corresponding author: Quan-min BU
  • Received Date: 2012-09-06
  • Rev Recd Date: 2013-01-16
  •  As an optimization method that has experienced rapid development over the past 20 years, the genetic algorithm has been successfully applied in many fields, but it requires repeated searches based on the characteristics of high-speed computer calculation and conditions of the known relationship between the objective function and independent variables. There are several hundred generations of evolvement, but the functional relationship is unknown in pollution source searches. Therefore, the genetic algorithm cannot be used directly. Certain improvements need to be made based on the actual situation, so that the genetic algorithm can adapt to the actual conditions of environmental problems, and can be used in environmental monitoring and environmental quality assessment. Therefore, a series of methods are proposed for the improvement of the genetic algorithm: (1) the initial generation of individual groups should be artificially set and move from lightly polluted areas to heavily polluted areas; (2) intervention measures should be introduced in the competition between individuals; (3) guide individuals should be added; and (4) specific improvement programs should be put forward. Finally, the scientific rigor and rationality of the improved genetic algorithm are proven through an example.   

     

  • loading
  • Altiparmak, F., Gen, M., Lin, L., and Karaoglan, I. 2009. A steady-state genetic algorithm for multi-product supply chain network design. Computers & Industrial Engineering, 56(2), 521-537. [doi:10.1016/j.cie. 2007.05.012]
    Aminifar, F., Lucas, C., Khodaei, A., and Fotuhi-Firuzabad, M. 2009. Optimal placement of phasor measurement units using immunity genetic algorithm. IEEE Transactions on Power Delivery, 24(3), 1014-1020. [doi: 10.1109/TPWRD.2009.2014030]
    Bazzazi, M., Safaei, N., and Javadian, N. 2009. A genetic algorithm to solve the storage space allocation problem in a container terminal. Computers & Industrial Engineering, 56(1), 44-52.
    Haupt, S. E. 2005. A demonstration of coupled receptor/dispersion modeling with a genetic algorithm. Atmospheric Environment, 39(37), 7181-7189. [doi: 10.1016/j.atmosenv.2005.08.027]
    Hollstein, R. B. 1971. Artificial Genetic Adaptation in Computer Control Systems. Ph. D. Dissertation. University of Michigan.
    Icaga, Y. 2004. Genetic algorithm usage in water quality monitoring networks optimization in Geris (Turkey) River Basin.Environmental Monitoring and Assessment, 108(3), 261-277.
    Lavric, V., Iancu, P., and Ple?u, V. 2005. Genetic algorithm optimization of water consumption and wastewater network topology. Journal of Cleaner Production, 13(15), 1405-1415. [doi:10.1016/j.jclepro. 2005.04.014]
    Li, M. J., Chen, D. S., and Cheng, S. Y. 2011. Optimizing emission inventory of CMAQ by means of genetic algorithms. Journal of Beijing University of Technology, 37(12), 1862-1868. (in Chinese)
    Li, Z. Y., and Peng, L. H. 2000. Source apportionment of atmospheric particulates based on genetic algorithm. Research of Environmental Sciences, 13(6), 19-21. (in Chinese)
    Liu, Z. Y., Ding, H. K., and Wu, M. 2009. Source apportionment of atmospheric particulates based on real coded genetic algorithm. Journal of Chengdu University of Information Technology, 24(2), 173-176. (in Chinese)
    Magnier, L., and Haghighat, F. 2010. Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network. Building and Environment, 45(3), 739-764. [doi: 10.1016/j.buildenv.2009.08.016]
    Mendes, J. J. M., Gonçalves, J. F., and Resende, M. G. C. 2009. A random key based genetic algorithm for the resource constrained project scheduling problem. Computers & Operations Research, 36(1), 92-109. [doi: 10.1016/j.cor.2007.07.001]
    Moradi, M. H., and Abedini, M. 2012. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. International Journal of Electrical Power & Energy Systems, 34(1), 66-74. [doi: 10.1016/j.ijepes.2011.08.023]
    Mukhopadhyay, A., Maulik, U., and Bandyopadhyay, S. 2009. Multiobjective genetic algorithm-based fuzzy clustering of categorical attributes. IEEE Transactions on Evolutionary Computation, 13(5), 991-1005.
    Park, S. Y., Choi, J. H., Wang, S. Y., and Park, S. S. 2006. Design of a water quality monitoring network in a large river system using the genetic algorithm. Ecological Modelling, 199(3), 289-297. [doi:10.1016/ j.ecolmodel.2006.06.002]
    Vallada, E., and Ruiz, R. 2009. A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times. European Journal of Operational Research, 211(3), 612-622. [doi: 10.1016/j.ejor.2011.01.011]
    Van Peteghem, V., and Vanhoucke, M. 2011. A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. European Journal of Operational Research, 201(2), 409-418. [doi: 10.1016/j.ejor.2009.03.034]
    Vidal, T., Crainic, T. G., Gendreau, M., and Prins, C. 2013. A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows. Computers & Operations Research, 40(1), 475-489. [doi: 10.1016/j.cor.2012.07.018]
    Whittaker, G., Confesor, R., Jr., Griffith, S. M., Fare, R., Grosskopf, S., Steiner, J. J., Mueller-Warrant, G. W., and Banowetz, G. M. 2009. A hybrid genetic algorithm for multi-objective problems with activity analysis-based local search. European Journal of Operational Research, 193(1), 195-203. [doi:10.1016/ j.ejor.2007.10.050]
    Xu, X. J., and Yao, R. T. 2012. Source rebuild for unknown atmospheric releasing affair based on genetic algorithm. Journal of Taiyuan University of Technology, 43(4), 431-434, 448. (in Chinese)
    Yang, W., Nan, J., Sun, D. Z., and Tian, Y. 2007. Application of genetic algorithm in the fields of water resources and water environment. Water Resources Protection, 23(1), 13-16, 34. (in Chinese)
    Yang, X. H., Yang, Z. F., Yin, X. N., and Li, J. Q. 2008. Chaos gray-coded genetic algorithm and its application for pollution source identifications in convection-diffusion equation. Communications in Nonlinear Science and Numerical Simulation, 13(8), 1676-1688. [doi: 10.1016/j.cnsns.2007.03.003]
    Zhou, W., and Li, Z. Y. 2008. Multi-source diffusion ant colony genetic algorithm. Computer Engineering and Design, 29(19), 5006-5008, 5036. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1831) PDF downloads(2180) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return