Volume 7 Issue 2
Apr.  2014
Turn off MathJax
Article Contents
John Leju Celestino LADU, Xi-wu Lü. 2014: Effects of hydraulic retention time, temperature, and effluent recycling on efficiency of anaerobic filter in treating rural domestic wastewater. Water Science and Engineering, 7(2): 168-182. doi: 10.3882/j.issn.1674-2370.2014.02.005
Citation: John Leju Celestino LADU, Xi-wu Lü. 2014: Effects of hydraulic retention time, temperature, and effluent recycling on efficiency of anaerobic filter in treating rural domestic wastewater. Water Science and Engineering, 7(2): 168-182. doi: 10.3882/j.issn.1674-2370.2014.02.005

Effects of hydraulic retention time, temperature, and effluent recycling on efficiency of anaerobic filter in treating rural domestic wastewater

doi: 10.3882/j.issn.1674-2370.2014.02.005
Funds:  This work was supported by the National Natural Science Foundation of China (Grant No. 51078074) and the Key Project of the Chinese Ministry of Education (Grant No. 308010).
More Information
  • Corresponding author: John Leju Celestino LADU
  • Received Date: 2013-03-01
  • Rev Recd Date: 2014-01-01
  • With rural population expansion and improvement of the socio-economic standard of living, treatment of rural domestic wastewater has rapidly become a major aspect of environmental concern. Selection of a suitable method for treatment of rural domestic wastewater depends on its efficiency, simplicity, and cost-effectiveness. This study investigated the effects of hydraulic retention time (HRT), temperature, and effluent recycling on the treatment efficiency of an anaerobic filter (AF) reactor. The first round of experimental operations was run for three months with HRTs of one, two, and three days, temperatures of 18℃, 21℃, and 24℃, and no effluent recycling. The second round of experimental operations was conducted for another three months with HRTs of three and four days; temperatures of 30.67℃, 30.57℃, and 26.91℃; and three effluent recycling ratios of 1:1, 1:2, and 2:1. The first round of operations showed removal rates of 32% to 44% for COD, 30% to 35% for TN, 32% to 36% for  , 19% to 23% for  , and 12% to 22% for TP. In the second round of operations, the removal rates varied from 75% to 81% for COD, 35% to 41% for TN, 31% to 39% for  , 30% to 34% for  , and 41% to 48% for TP. The average gas production rates were 6.72 L/d and 7.26 L/d for the first and second rounds of operations, respectively. The gas production rate increased in the second round of operations as a result of applied effluent recycling. The best removal efficiency was obtained for an optimum HRT of three days, a temperature of 30℃, and an effluent recycling ratio of 2:1. The results show that the removal efficiency of the AF reactor was affected by HRT, temperature, and effluent recycling.

     

  • loading
  • Agrawal, L. K., Ohashi, Y., Mochida, E., Okui, H., Ueki, Y., Harada, H., and Ohashi, A. 1997. Treatment of raw sewage in a temperate climate using a UASB reactor and the hanging sponge cubes process. Water Science and Technology, 36(6-7), 433-440. [doi: 10.1016/S0273-1223(97)00552-0]
    Angenent, L. T., and Sung, S. 2001. Development of anaerobic migrating blanket reactor (AMBR), a novel anaerobic treatment system. Water Research, 35(7), 1739-1747. [doi: 10.1016/S0043-1354(00)00447-4].
    Barbosa, R. A., and Sant’Anna, G. L. 1989. Treatment of raw domestic sewage in an UASB reactor. Water Research, 23(12), 1483-1490. [doi: 10.1016/0043-1354(89)90112-7]
    Bodik, L., Herdova, B., and Kratochvil, K. 2000. The application of anaerobic filter for municipal wastewater treatment. Proceedings of the 20th International Conference of the Slovak Society of Chemical Engineering, 54(3), 159-164.
    Bodik, I., Kratochvil, K., Gaspirkova, E., and Hutnan, M. 2003. Nitrogen removal in an anaerobic baffled filter reactor with aerobic post-treatment. Bioresource Technology, 86(1), 79-84. [doi:10.1016/S0960- 8524(02)00109-8]
    Bogte, J. J., Breure, A. M., van Andel, J. G., and Lettinga, G. 1993. Anaerobic treatment of domestic wastewater in small scale UASB reactors. Water Science and Technology, 27(9), 75-82.
    Chaisri, R., Boonsawang, P., Prasertsan, P., and Chaiprapat, S. 2007. Effect of organic loading rate on methane and volatile fatty acids productions from anaerobic treatment of palm oil mill effluent in UASB and UFAF reactors. Songklanakarin Journal of Science and Technology, (s2), 311-323.
    Chernicharo, C. A. L., and Machado, R. M. G. 1998. Feasibility of UASB/AF system for domestic sewage treatment in developing countries. Water Science and Technology, 38(8-9), 325-332. [doi:10.1016/S0273- 1223(98)00708-2]
    Chernicharo, C. A. L., and Nascimento, M. C. P. 2001. Feasibility of a pilot-scale UASB/trickling filter system for domestic sewage treatment. Water Science and Technology, 44(4), 221-228.
    Chernicharo, C. A. L. 2007. Anaerobic Reactors, Biological Wastewater Treatment Series (Volume 4). London: IWA Publishing.
    Chuan, W. S. 2007. Performance of Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Wastewater at Different Retention Times. M. E. Dissertation, Kent Ridge: National University of Singaphore.
    Chul, H. W., and Jay, M. R. 2008. Anaerobic/oxic treatment of slurry-type swine waste. Environmental Engineering Research, 13(4), 203-209.
    Clescerl, L. S., Arnold, E. G., and Eaton, A. D. 1998. Standard Methods for the Examination of Water and Wastewater. 20th ed. Washington: American Public Health Association.
    Elmitwalli, T. A., Sklyar, V., Zeeman, G., and Lettinga, G. 2002a. Low temperature pre-treatment of domestic sewage in an anaerobic hybrid or an anaerobic filter reactor. Bioresource Technology, 82(3), 233-239. [doi: 10.1016/S0960-8524(01)00191-2]
    Elmitwalli, T. A., Oahn, K. L. T., Zeeman, G., and Lettinga, G. 2002b. Treatment of domestic sewage in a two step anaerobic filter/anaerobic hybrid system at low temperature. Water Research, 36(9), 2225-2232. [doi: 10.1016/S0043-1354(01)00438-9]
    Elmitwalli, T. A., and Ralf, O. 2007. Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor. Water Research, 41(6), 1379-1387. [doi:10.1016/j.watres. 2006.12.016]
    Foresti, E. 2001. Perspectives on anaerobic treatment in developing countries. Water Science and Technology, 44(8), 141-148.
    Gijzen, H. J. 2002. Anaerobic digestion for sustainable development: a natural approach. Water Science and Technology, 45(10), 321-328.
    Giuseppe, B. 2009. Integrated anaerobic/aerobic biological treatment for intensive swine production. Bioresource Technology, 100(22), 5424-5430. [doi: 10.1016/j.biortech.2008.12.005]
    Govindaradjane, S., and Sundararajan, T. 2013. Performance and kinetics of a huasb reactor for treating tapioca-based starch industrial waste stream. International Journal of Engineering and Advanced Technology (IJEAT), 2(4), 55-64.
    Hammes, F., Kalogo, Y., and Verstraete, W. 2000. Anaerobic digestion technologies for closing the domestic water, carbon and nutrient cycles. Water Science and Technology, 41(3), 203-211.
    Han, D. J. 1996. Reaction Characteristics of the Development of Biofilm Process Combined Upflow Blanket Filter and Anoxic-Oxic Process for the Nutrient Removal. Ph. D. Dissertation. Chuncheon: Kangwon National University.
    Heertjes, P. M., and Van Der Meer, R. R. 1978. Dynamics of liquid flow in an upflow reactor used for anaerobic treatment of wastewater. Biotechnology and Bioengineering, 20(10), 1577-1594. [doi:10.1002/ bit.260201007]
    Hu, Z. H., Yu, H. Q., and Zhu, R. F. 2005. Influence of particle size and pH on anaerobic degradation of cellulose by ruminal microbes. International Biodeterioration and Biodegradation, 55(3), 233-238. [doi: 10.1016/j.ibiod.2005.02.002]
    Ladu, J. L. C., Lu, X., and Loboka, M. K. 2012. Experimental assessment on the effect of OLR and HRT on the efficiency of anaerobic filter treating abattoir. International Journal of Engineering and Advanced Technology (IJEAT), 2(11), 415-420.
    Langenhoff, A. A. M., and Stucky, D. C. 2000. Treatment of dilute wastewater using an anaerobic baffled reactor: Effect of low temperature. Water Research, 34(15), 3867-3875. [doi:10.1016/S0043-1354(00) 00136-6].
    Lettinga, G., van Nelsen, A. F. H., Hobma, S. W., De Zeeu, W. W., and Klapwijk, A. 1980. Use of the upflow sludge (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnology and Bioengineering, 22(4), 699-734. [doi: 10.1002/bit.260220402]
    Lettinga, G., Roersma, R., Grin, P., de Zeeuw, W., Hulshof Pol, L., van Velsen, L., Hovma, S., and Zeeman, G. 1981. Anaerobic treatment of sewage and low strength wastewater. Proceedings of the Second International Symposium on Anaerobic Digestion, 271-291. Travemunde: Elsevier Biomedical Press.
    Lettinga, G., Roersma, R., and Grin, P. 1983. Anaerobic treatment of raw domestic sewage at ambient temperatures using a granular bed UASB reactor. Biotechnology and Bioengineering, 25(7), 1701-1723 [doi: 10.1002/bit.260250703]
    Lettinga, G. 1996. Sustainable integrated biological wastewater treatment. Water Science and Technology, 33(3), 85-98. [doi: 10.1016/0273-1223(96)00303-4]
    Lew, B., Tarre, S., Belavski, M., and Green, M. 2004. UASB reactor for domestic wastewater treatment at low temperatures: a comparison between a classical UASB and hybrid UASB-filter reactor. Water Science and Technology, 49(11-12), 295-301.
    Luostarinen, S., Sanders, W., Kujawa-Roeleveld, K., and Zeeman, G. 2007. Effect of temperature on anaerobic treatment of black water in UASB-septic tank systems. Bioresource Technology, 98(5), 980-986. [doi: 10.1016/j.biortech.2006.04.018]
    Manariotis, I. D., and Grigoropoulos, S. G. 2006. Anaerobic filter treatment of municipal wastewater: biosolids behavior. Journal of Environmental Engineering, 132(1), 23-31. [doi:10.1061/(ASCE)0733- 9372(2006)132:1(23)]
    Martina, U. 2008. Effect of Hydraulic Loading Variation on a Pilot Scale UASB Reactor Treating Domestic Wastewater at Vapi CETP. M. E. Dissertation. Sweden: Lund University.
    Mohammed, A. H., and Abbas, H. A. 2007. Sequential anaerobic/aerobic treatment of pharmaceutical wastewater. Tikrit Journal of Engineering Sciences, 14(2), 1-31.
    Paulo, P. L., Villa, G., Van Lier, J. B., and Lettinga, G. 2003. The anaerobic conversion of methanol under thermophilic conditions: pH and bicarbonate dependence. Journal of Bioscience and Bioengineering, 96(3), 213-218.
    Sam-soon, P. A., Loewenthal, R. E., Wentzel, M. C., and Marais, G. V. R. 1991. A long chain fatty acid, oleate, as sole substrate in upflow anaerobic sludge bed (UASB) systems. Water SA, 17(1), 165-170.
    Seghezzo, L. 1997. Kinetics and Structure of Anaerobic Granular Sludge from EGSB Reactors. M. E. Dissertation. Wageningen: Wageningen Agricultural University.
    Seghezzo, L. 2004. Anaerobic Treatment of Domestic Wastewater in Subtropical Regions. Ph. D. Dissertation. Wageningen: Wageningen University.
    Stronach, S. M., Rudd, T., and Lester, J. N. 1986. Anaerobic Digestion Process in the Industrial Wastewater Treatment. Berlin: Springer-Verlag.
    Van der Last, A. R. M., and Lettinga, G. 1992. Anaerobic treatment of domestic sewage under moderate climatic (Dutch) conditions using upflow reactors at increased superficial velocities. Water Science and Technology, 25(7), 167-178.
    Van Haandel, A. C., and Lettinga, G. 1994. Anaerobic sewage treatment. A Practical Guide for Regions with a Hot Climate. Chcester: John Wiley & Sons Ltd.
    Wang, K. 1994. Integrated Anaerobic and Aerobic Treatment of Sewage. Ph. D. Dissertation. Wageningen: Wageningen University.
    Young, J. C., and McCarty, P. L. 1969. The anaerobic filter for waste treatment. Journal of Water Pollution Control Federation, 41(5), 160-173
    Yu, H. Q., and Fang, H. H. P. 2002. Acidogenesis of dairy wastewater at various pH levels. Water Science and Technology, 45(10), 201-206.
    Yu, H. Q., Hu, Z. H., Hong, T. Q., and Gu, G. W. 2002. Performance of an anaerobic filter treating soybean processing wastewater with and without effluent recycle. Process Biochemistry, 38(4), 507-513. [doi: 10.1016/S0032-9592(02)00175-9]
    Zeeman, G., and Lettinga, G. 1999. The role of anaerobic digestion of domestic sewage in closing the water and nutrient cycle at community level. Water Science and Technology, 39(5), 187-194.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2405) PDF downloads(2073) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return