Water Science and Engineering 2010, 3(2) 121-131 DOI:   10.3882/j.issn.1674-2370.2010.02.001  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
BTOPMC model
Xin’anjiang model
Daily rainfall-runoff simulation
SCE-UA method
humid watershed
semi-humid and semi-arid watershed
BAO -hongjun
WANG -lili
LI -zhijia
Article by Bao,.H
Article by Wang,.L
Article by Li,.Z

Hydrological Daily Rainfall-runoff Simulating with BTOPMC model and Comparison with Xin’anjiang model

Hong-jun BAO*1, Li-li WANG1, 2, 3 , Zhi-jia LI3 , Lin-na ZHAO1, Guo-ping ZHANG1

1. National Meteorological Center, China Meteorological Administration, Beijing 100081, P. R. China
2. Numerical Prediction Center, China Meteorological Administration, Beijing 100081, P. R. China
3. College of Hydrology and Water Resources,Hohai University, Nanjing 210098,P. R. China


A grid-based distributed hydrological model BTOPMC (Block-wise use of TOPMODEL) is applied for hydrological daily rainfall-runoff simulation, which was developed from the original TOPMODEL. The runoff is explicitly calculated on a grid by grid basis and flow concentration method is Muskingum-Cunge in BTOPMC model. In order to testify the model’s application, BTOPMC model and Xin’anjiang model were applied in humid watersheds and semi-humid and semi-arid watersheds in China. The models parameters were optimized by SCE-UA method. Results show that both models are good at simulating the daily hydrograph in humid watersheds and BTOPMC model perform poor in semi-humid and semi-arid watersheds. The excess infiltration mechanism should be incorporated into BTOPMC model for broadening the model’s application region.

Keywords DEM   BTOPMC model   Xin’anjiang model   Daily rainfall-runoff simulation   SCE-UA method   humid watershed   semi-humid and semi-arid watershed  
Received 2010-02-03 Revised 2010-06-25 Online: 2010-06-25 
DOI: 10.3882/j.issn.1674-2370.2010.02.001
Corresponding Authors: bao hongjun
Email: baohongjun@cma.gov.cn
About author:


Abbott, M. B., Bathurst, J. C., Cunge, J. A., O’Connell, P. E., and Rasmussen, J. 1986. An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system. Journal of Hydrology, 87(1-2), 45-59. [doi:10.1016/ 0022-1694(86)90114-9]
Ao, T. Q. 2000. Development of a Distributed Hydrological Model for Large River Basins and Its Application to Southeast Asian Rivers. Ph. D. Dissertation. Kofu, Japan: University of Yamanashi.
Ao, T. Q., Takeuchi, K., Ishidaira, H., Yoshitani, J., and Fukami, K. 2003. Development and application of a new algorithm for automated pit removal for grid DEMs. Hydrological Sciences Journal, 48(6), 985-997. [doi:10.1623/hysj.48.6.985.51423]
Bao, H. J. 2006. Research on the Application of Flood Forecasting and Scheduling Model in the Basin of Yishusi. M. E. Dissertation. Nanjing: Hohai University. (in Chinese)
Bao, H. J. 2009. Coupling EPS-Hydrologic-Hydraulic Model for Flood Forecasting. Ph. D. Dissertation. Nanjing: Hohai University. (in Chinese)
Bao, H. J., Li, Z. J., and Wang, L. L. 2009. Real-time flood forecasting for complex watershed with flood diversion and flood retarding areas. Journal of Hydroelectric Engineering, 28(4), 5-12. (in Chinese)
Beven, K. J., and Kirkby, M. J. 1979. A physically based variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43-69.
Burnash, R. J., Ferra, R. L., and McGuire, R. A. 1973. A General Stream Flow Simulation System Conceptual Modeling for Digital Computer. Sacramento: Joint Federal State River Forecasts Center.
Calver, A., and Wood, W. L. 1995. The institute of hydrology distributed model. Singh, V. P. ed., Computer Models of Watershed Hydrology, 595-626. Highlands Ranch, CO: Water Resources Publications.
Crawford, N. H., and Linsley, R. K. 1966. Digital Simulation in Hydrology: The Stanford Watershed Model IV Technical Report. Palo Alto, CA: Stanford University.
Cunge, J. A. 1969. On the subject of a flood propagation method (Muskingum Method). Journal of Hydraulic Research, 7(2), 205-230.
Deng, P., Li, Z. J., and Xie, F. 2008. Application of TOPMODEL in Buliu River Basin and comparison with Xin’anjiang model. Water Science and Engineering, 1(2), 25-32. [doi:10.3882/j.issn.1674-2370.2008.02. 003]
Duan, Q. Y., Sorooshian, S., and Gupta, V. K. 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 28(4), 1015-1031. [doi:10.1029/91WR02985]
Duan, Q. Y., Gupta, V. K., and Sorooshian, S. 1993. Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76(3), 501-521. [doi:10.1007/BF00939380]
Duan, Q. Y., Sorooshian, S., and Gupta, V. K. 1994. Optimal use of the SCE-UA global optimization method for calibrating watershed models. Journal of Hydrology, 158(3-4), 265-284. [doi:10.1016/0022-1694 (94)90057-4]
Freeze, R. A., and Harlan, R. L. 1969. Blueprint for a physically-based, digitally simulated hydrologic response model. Journal of Hydrology, 9(3), 237-258. [doi:10.1016/0022-1694(69)90020-1]
Garrote, L., and Bras, R. L. 1995. A distributed model for real-time flood forecasting using digital elevation models. Journal of Hydrology, 167(1-4), 279-306.  [doi:10.1016/0022-1694(94)02592-Y]
Green, W. H., and Ampt, G. A. 1911. Studies on soil physics (Part I): The flow of air and water through soils. Journal of Agricultural Science. 4, 1-24.
Hapuarachchi, H. A. P., Kiem, A. S., Ishidaira, H., Magome, J., and Takeuchi, K. 2004. Eliminating uncertainty associated with classifying soil types in distributed hydrologic modeling. Proceedings of AOGS 1st Annual Meeting and APHW 2nd Conference, 592-600. Singapore.
Jenson, S. K., and Domingue, J. O. 1988. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54(11), 1593-1600.
Li, Z. J., Zhou, Y., and Hapuarachchi, H. A. P. 2004. Application of global optimization to calibration of Xin’anjiang model. Journal of Hohai University (Natural Sciences), 32(4), 376-379. (in Chinese)
Li, Z. J., Yao, C., and Kong, X. G. 2005. The improved Xin’anjiang model. Journal of Hydrodynamics, 17(6), 746-751.
Li, Z. J., Cheng, Y., and Xu, P. Z. 2006a. Application of GIS-based hydrological models in humid watersheds. Water for Life: Surface and Ground Water Resources, Proceedings of the 15th APD-IAHR & ISMH, 685-690. Madras.
Li, Z. J., Zhang, K., and Yao, C. 2006b. Comparison of distributed geological models based on GIS technology and DEM. Journal of Hydraulic Engineering, 37(8), 1022-1028. (in Chinese)
Li, Z. J. 2008. Application and Research of Hydrological Modelling. Nanjing: Hohai University Press. (in Chinese)
Li, Z. J., and Zhang, K. 2008. Comparison of three GIS-based hydrological models. Journal of Hydrologic Engineering, 13(5), 364-370. [doi:10.1061/(ASCE)1084-0699(2008)13:5(364)]
Li, Z. J., Bao, H. J., Xue, C. S., Hu, Y. Z., and Fang, H. 2008. Real-time flood forecasting of Huai River with flood diversion and retarding areas. Water Science and Engineering, 1(2), 10-24. [doi:10.3882/j.issn. 1674-2370.2008.02.002]
Liu, Z., and Todini, E. 2002. Towards a comprehensive physically-based rainfall-runoff model. Hydrology and Earth System Sciences, 6(5), 859-881.
Olivera, F., and Maidment, D. 1999. Geographic information systems (GIS)-based spatially distributed model for runoff routing. Water Resources Research, 35(4), 1155-1164.
Singh, V. P. 1995. Watershed modeling. Singh, V. P. ed., Computer Models of Watershed Hydrology (1st Edition), 1-22. Highlands Ranch, Colorado: Water Resources Publications.
Sivapalan, M., Beven, K. J., and Wood, E. F. 1987. On hydrologic similarity 2: A scale model of storm runoff production. Water Resources Research, 23(12), 2266-2278.
Sugawara, M. 1979. Automatic calibration of the tank model. Hydrological Sciences Bulletin, 24(3), 375-388.
Tachikawa, Y., Vieux, B. E., Georgakakos, K. P., and Nakakita, E. 2003. Weather Radar Information and Distributed Hydrological Modeling. Wallingford: International Association of the Hydrologic Sciences Press.
Takeuchi, K., Ao, T., and Ishidaira, H. 1999. Introduction of block-wise use of TOPMODEL and Muskingum-Cunge method for the hydroenvironmental simulation of a large ungauged basin. Hydrological Sciences Journal, 44(4), 633-646. [doi:10.1080/02626669909492258]
Todini, E. 1996. The ARNO rainfall-runoff model. Journal of Hydrology, 175(1-4), 339-382. [doi: 10.1016/S0022-1694(96)80016-3]
Todini, E., and Ciarapica, L. 2001. The TOPKAPI model. Singh, V. P., and Frevert, D. K., eds., Mathematical Models of Large Watershed Hydrology. Littleton: Water Resources Publications, LLC.
U.S. Geological Survey (USGS). 2005. GTOP30. http://edc.usgs.gov/products/elevation/gtopo30/gtopo 30.html [Retrieved May 20, 2010]
Wang, G. Q., Zhou, M. C., Takeuchi, K., and Ishidaira, H. 2007a. Improved version of BTOPMC model and its application in event-based hydrologic simulations. Journal of Geographical Sciences, 17(1), 73-84. [doi:10.1007/s11442-007-0073-2]
Wang, L. L., Li, Z. J., and Bao, H. J. 2007b. Application of hydrological models based on DEM in the Yihe basin. Journal of Hydrologic Engineering, 37(S1), 417-422. (in Chinese)
Wang, L. L. 2010. Study on Grid and Exceed-Infiltration Runoff Mechanism Based Hydrologic Models and Comparison Application. Ph. D. Dissertation. Nanjing: Hohai University. (in Chinese)
Wang, L. L., Li, Z. J., and Bao, H. J. 2010a. Application of developed grid-GA distributed hydrologic model in semi-humid and semi-arid basin. Transactions of Tianjin University, 16(3), 209-215.
Wang, L. L., Li, Z. J., and Bao, H. J. 2010b. Development and comparison of grid-based distributed hydrological models for excess-infiltration runoffs. Journal of Hohai University (Natural Sciences), 38(2), 123-128. [doi:10.3876/j.issn.1000-1980.2010.02.001] (in Chinese)
Wigmosta, M. S., Vail, L. W., and Lettenmaier, D. P. 1994. A distributed hydrology-vegetation model for complex terrain. Water Resources Research, 30(6), 1665-1679.
Yang, D., Herath, S., and Musiake, K. 2002. A hillslope-based hydrological model using catchment area and width functions. Hydrological Sciences Journal, 47(1), 49-65. [doi:10.1080/02626660209492907]
Yao, C., Li, Z. J., Bao, H. J., and Yu, Z. B. 2009. Application of a developed Grid-Xin’anjiang model to Chinese watersheds for flood forecasting purpose. Journal of Hydrologic Engineering, 14(9), 923-934. [doi:10.1061/(ASCE)HE.1943-5584.0000067]
Yu, Z. 2000. Assessing the response of subgrid hydrologic processes to atmospheric forcing with a hydrologic model system. Global and Planetary Change, 25(1-2), 1-17.
Zhao, R. J. 1983. Watershed Hydrological Model: Xin’anjiang Model and Shanbei Model. Beijing: China WaterPower Press. (in Chinese)
Zhao, R. J. 1992. The Xin’anjiang model applied in China. Journal of Hydrology, 135(1-4), 371-381. [doi: 10.1016/0022-1694(92)90096-E]

Similar articles
1.James Oloche OLEYIBLO; Zhi-jia LI.Application of HEC-HMS for flood forecasting in Misai and Wan’an catchments in China[J]. Water Science and Engineering, 2010,3(1): 14-22
2.Li CHENG.System dynamics model of Suzhou water resources carrying capacity and its application[J]. Water Science and Engineering, 2010,3(2): 144-155
3. Guang-ju ZHAO, Jun-feng GAO, Peng TIAN, Kun TIAN.Comparison of two different methods for determining flow direction in catchment hydrological modeling[J]. Water Science and Engineering, 2009,2(4): 1-15
4.Li Zhijia*1, Bao Hongjun1, Xue Cangsheng2, Hu Yuzhong2, Fang Hong2.Real-time flood forecasting of Huai River with flood diversion and retarding areas[J]. Water Science and Engineering, 2008,1(2): 10-24
5. Xi LI, Yi-gang WANG, Su-xiang ZHANG.Numerical simulation of water quality in Yangtze Estuary[J]. Water Science and Engineering, 2009,2(4): 40-51

Copyright by Water Science and Engineering