Water Science and Engineering 2010, 3(3) 341-353 DOI:   10.3882/j.issn.1674-2370.2010.03.010  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
spur dike
dissolved pollutant
numerical simulation
CHEN Li-Ping
JIANG -Juncheng
Article by Chen,L.P
Article by JIANG,.J

Experiments and numerical simulations on transport of dissolved pollutants around spur dike

Li-ping CHEN,JIANG Juncheng

College of Urban Construction and Safety Engineering, Nanjing University of Technology, Nanjing 210009, P. R. China


The flow field around spur dike is with three-dimension characteristic. To analysis the influences of the flow field on pollutant transport, based on compressive VOF scheme, the 3D transient compressive pollutant transport model CPTM and CE bounded differencing scheme were developed. For the calibration and validation of CPTM, laboratory experiments were carried out in a flume with a non-submerged spur dike. The spur dike was angled at 60, 90, and 120ο to the upstream. The simulations agreed with the experiments very well. The simulations and experiments showed that the distribution of pollutant concentration is decided by circumfluence and main flow. Concentration decay in circumfluence zone is slower than that in main flow. Behind of the spur dike,the concentration fluctuation increases with the increasing of spur dike angle.

Keywords VOF   spur dike   dissolved pollutant   numerical simulation   experiment  
Received 2010-07-06 Revised 2010-09-14 Online: 2010-09-27 
DOI: 10.3882/j.issn.1674-2370.2010.03.010
Corresponding Authors: Chen Li-ping
Email: clpjoy@njut.edu.cn
About author:


Afkhami, S., Zaleski, S., and Bussmann, M. 2009. A mesh-dependent model for applying dynamic contact angles to VOF simulations. Journal of Computational Physics, 228(15), 5370-5389. [doi:10.1016/j.jcp. 2009.04.027]
Ai, C. F., and Jin, S. 2008. Three-dimensional non-hydrostatic model for free-surface flows with unstructured grid. Journal of Hydrodynamics, Ser. B, 20(1), 108-116. [doi:10.1016/S1001-6058(08)60035-9]
Caboussat, A., Francois, M. M., and Glowinski, R. 2008. A numerical method for interface reconstruction of triple points within a volume tracking algorithm. Mathematical and Computer Modelling, 48(11-12), 1957-1971. [doi:10.1016/j.mcm.2008.05.009]
Cui, Z. F., Zhang, X. F., and Feng, X. X. 2008. Numerical simulation on scour around spur-dike by 3D turbulent model. Journal of Hydrodynamics, Ser. A, 23(1), 33-41. (in Chinese)
Darwish, M. S. 1993. A new high-resolution scheme based on the normalize variable formulation. Numerical Heat Transfer, Part B, 24(3), 353-371. [doi:10.1080/10407799308955898]
Dolbow, J., Mosso, S., Robbins, J. and Voth, T. 2008. Coupling volume-of-fluid based interface reconstructions with the extended finite element method. Computer Methods in Applied Mechanics and Engineering, 197(5), 439-447. [doi:10.1016/j.cma. 2007.08.010]
Duan, J. G., He, L., Fu, X. D., and Wang, Q. Q. 2010. Mean flow and turbulence around experimental spur dike. Advances in Water Resources, 32(12), 1717-1725. [doi:10.1016/j.advwatres.2009.09.004]
Francois, M. M., Cummins, S. J., Dendy, E. D., Kothe, D. B., Sicilian, J. M., and Williams, M. W. 2006. A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. Journal of Computational Physics, 213(1), 141-173. [doi:10.1016/j.jcp.2005. 08.004]
Fu, X. L., Li, D. M., and Chen, Y. B. 2006. Flow field calculation and analysis of Acipenser Sinensis’s spawning site in Gezhouba downstream. Advances in Water Science, 17(5), 700-704. (in Chinese)
Hirt, C. W., and Nichols, B. D. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. [doi:10.1016/0021-9991(81)90145-5]
Hua, Z. L., Xing, L. H., and Gu, L. 2008. Application of a modified quick scheme to depthaveraged k-ε turbulence model based on unstructured grids. Journal of Hydrodynamics, Ser. B, 20(4), 514-523. [doi:10. 1016/S1001- 6058(08)60088-8]
Jasak, H., Weller, H. G. and Gosman, A. D. 1999. High resolution NVD differencing scheme for arbitrarily unstructured meshes. International Journal for Numerical Methods in Fluids, 31(2), 431-449. [doi:10.1002/(SICI)1097-0363(19990930)31:2<431::AID-FLD884>3.3.CO;2-K]
Larmaei, M. M., and Mahdi, T. 2010. Simulation of shallow water waves using VOF method. Journal of Hydro-environment Research, 3(4), 208-214. [doi:10.1016/j.jher.2009.10.010]
Launder, B. E., and Spalding, D. B. 1990. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 81(3), 269-289.
Leonard, B. P. 1988. Simple high-accuracy resolution program for convective modeling of discontinuities. International Journal for Numerical Methods in Fluids, 8(10), 1291-1318. [doi:10.1002/fld.1650081013]
Markatos, N. C. 1986. The mathematical modeling of turbulence flows. Applied Mathematical Modelling, 10(3), 190-220. [doi:10.1016/0307-904X(86)90045-4] 
Mayerle, R., Wang, S. S. Y., and Toro, F. M. 1995. Verification of a three-dimensional numerical model simulation of the flow in the vicinity of spur dikes. Journal of Hydraulic Research, 33(2), 243-256. [doi:10.1080/ 00221689509498673]
Qin, L., Tian, H. J., and Zhao, H. 2010. Large eddy simulation of flow fluctuating pressure based on an improved VOF free surface track method. Journal of Hydroelectric Engineering, 29(3), 92-96. (in Chinese)
Raessi, M., Mostagnimi, J., and Bussmann, M. 2010. A volume-of-fluid interfacial flow solver with advected normals. Computers and Fluids, 39(8), 1401-1410. [doi:10.1016/j.compfluid. 04.010]
Sha, H. F., Wu, S. Q., and Chen, Z. W. 2006. 3D numerical simulation for spillway tunnel. Advances in Water Science, 17(4), 507-511. (in Chinese)
Sussman, M., and Puckett, E. G. 2000. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics, 162(2), 301-337. [doi:10.1006/jcph.2000.6537]
Tang, X. L., Ding, X., and Chen, Z. C. 2007. Experimental and numerical investigations on secondary flows and sedimentations behind a spur dike. Journal of Hydrodynamics, Ser. B, 19(1), 23-29. [doi:10.1016/ S1001-6058(07)60023-7]
Ubbink, O., and Issa, R. I. 1999. A method for capturing sharp fluid interfaces on arbitrary meshes. Journal of Computational Physics, 153(1), 26-50. [doi:10.1006/jcph.1999.6276]
Wu, C. H., and Yuan, H. L. 2007. Efficient non-hydrostatic modelling of surface waves interacting with structures. Applied Mathematical Modelling, 31(4), 687-699. [doi:10.1016/j.apm.2005.12.002]
Zhu, J., and Rodi, W. 1991. Low dispersion and bounded convection scheme. Computer Methods in Applied Mechanics and Engineering, 92(1), 87-96. [doi:10.1016/0045-7825(91)90199-G]
Zou, J. F., and Zheng, Y. 2008. Application of bounded and compressed VOF method to interfacial flow. Journal of Zhejiang University (Engineering Science), 42(2), 253-258. (in Chinese)

Similar articles

Zheng Jinhai1; H. Mase2; Li Tongfei1


Modeling of random wave transformation with strong wave-induced coastal currents

[J]. Water Science and Engineering, 2008,1(1): 18-26
2.Yong FAN.Application of 2-D sediment model to fluctuating backwater area of Yangtze River[J]. Water Science and Engineering, 2009,2(3): 37-47
3.Lu QU; Ran LI; Jia LI;Ke-feng LI; Lin WANG.Experimental study on total dissolved gas supersaturation in water[J]. Water Science and Engineering, 2011,4(4): 396-404
4.Ning HE;Zhen-xing ZHAO.Theoretical and numerical study of hydraulic characteristics of orifice energy dissipator[J]. Water Science and Engineering, 2010,3(2): 190-199
5.Ying-wei SUN, Hai-gui KANG*.Application of CLEAR-VOF method to wave and flow simulations[J]. Water Science and Engineering, 2012,5(1): 67-78
6.Shu-he WEI; Liao-jun ZHANG.Vibration analysis of hydropower house based on fluid-structure coupling numerical method[J]. Water Science and Engineering, 2010,3(1): 75-84
7.Yan ZHANG; Jian-fu SHAO.Elastoplastic cup model for cement-based materials[J]. Water Science and Engineering, 2010,3(1): 102-112

Hai-ying HU*1,2;Wei-min BAO2;Tao WANG2;Si-min QU2

.Experimental study on stable isotopic fractionation of evaporating water under varying temperature[J]. Water Science and Engineering, 2009,2(2): 11-18
9.Yong-xue WANG, Xiao-zhong REN, Ping DONG, Guo-yu WANG.Three-dimensional numerical simulation of wave interaction with perforated quasi-ellipse caisson[J]. Water Science and Engineering, 2011,4(1): 46-60
10.Ying-kui WANG;Chun-bo JIANG.Experimental Investigation of Tunnel Discharge Ability by Using Drag Reduction Techniques[J]. Water Science and Engineering, 2010,3(2): 200-207
11.Shuai-jie GUO*1, 2, Fu-hai ZHANG1, 2, Bao-tian WANG1, 2, Chao ZHANG3.Settlement prediction model of slurry suspension based on sedimentation rate attenuation[J]. Water Science and Engineering, 2012,5(1): 79-92
12.Ze-gao YIN;Xian-wei Cao; Hong-da SHI; Jian MA.Numerical simulation of flow past circular duct[J]. Water Science and Engineering, 2010,3(2): 208-216
13.Cheng-gang LU, Zhou-hu WU, Guo-feng HE, Jie ZHU, Gui-yong XIAO.Numerical simulation of sediment deposition thickness at Beidaihe International Yacht Club[J]. Water Science and Engineering, 2010,3(3): 313-320
14.Jun CHEN, Hong-wu TANG.Multi-approach analysis of maximum riverbed scour depth above a subway tunnel[J]. Water Science and Engineering, 2010,3(4): 431-442
15.Rasool GHOBADIAN; Kamran MOHAMMADI.Simulation of subcritical flow pattern in 180o  uniform and convergent open-channel bends using SSIIM 3-D model[J]. Water Science and Engineering, 2011,4(3): 270-283

Copyright by Water Science and Engineering