Water Science and Engineering 2010, 3(3) 241-256 DOI:   10.3882/j.issn.1674-2370.2010.03.001  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
model coupling
TOPNET model
Big Darby Watershed
Article by Alphonce,C.G

Simulating streamflow and water table depth with a coupled hydrological model

Alphonce Chenjerayi GUZHA1,Thomas Byron HARDY2

1. Department of Agricultural and Biological Engineering, Southwest Florida Research and Education Center, University of  Florida,Immokalee,FL34142,USA 2. River Systems Institute, Texas State University, San Marcos, Texas 78666, USA


A coupled model integrating MODFLOW and TOPNET with the models interacting through the exchange of recharge and baseflow and river-aquifer interactions was developed and applied to the Big Darby Watershed in Ohio, USA. Calibration and validation results show that there is generally good agreement between measured streamflow and simulated results from the coupled model. At two gauging stations, average goodness of fit ( ), percent bias ( ), and Nash Sutcliffe efficiency ( ) values of 0.83, 11.15%, and 0.83, respectively, were obtained for simulation of streamflow during calibration, and values of 0.84, 8.75%, and 0.85, respectively, were obtained for validation. The simulated water table depths yielded average values of 0.77 and 0.76 for calibration and validation, respectively. The good match between measured and simulated streamflows and water table depths demonstrates that the model is capable of adequately simulating streamflows and water table depths in the watershed and also capturing the influence of spatial and temporal variation in recharge.

Keywords hydrologicalmodeling   model coupling   streamflow   groundwater   TOPNET model   MODFLOW model   Big Darby Watershed  
Received 2010-01-07 Revised 2010-07-09 Online: 2010-09-27 
DOI: 10.3882/j.issn.1674-2370.2010.03.001
Corresponding Authors: Alphonce Chenjerayi GUZHA
Email: acguzha@ufl.edu.us
About author:


Bandaragoda, C., Tarboton, D. G., and Woods, R. 2004. Application of TOPNET in the distributed model intercomparison project. Journal of Hydrology, 298, 178-201. [doi:10.1016/j.jhydrol.2004.03.038]
Beven, K. J., and Kirkby, M. J. 1979. A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Journal, 24(1), 43-69. [doi:10.1080/02626667909491834]
Beven, K. J., Quinn, P., Romanowicz, R., Freer, J., Fisher, J., and Lamb, R. 1995. TOPMODEL and GRIDATB, A Users Guide to the Distribution Versions for DOS. Technical Report 110 (2nd edition). Lancaster: Centre for Research on Environmental Systems and Statistics, Lancaster University.
Bulatewicz, T. F., Jr. 2006. Support for Model Coupling: An Interface-Based Approach. Ph. D. Dissertation. Eugene: University of Oregon.
Clapp, R. B., and Hornberger, G. M. 1978. Empirical equations for some soil hydraulic properties. Water Resources Research, 14(4), 601-604.[doi:10.1029/WR014i004p00601]
Donigian, A. S., Jr., Imhoff, J. C., and Bicknell, B. R. 1983. Predicting water quality resulting from agricultural non point source pollution via simulation-HSPF. Schaller, F. W., and Baily, G. W., eds., Agricultural Management and Water Quality, 200-249. Ames: Iowa State University Press.
Ellingson, C., and Schwartzman, P. 2004. Integration of a detailed groundwater model into a regional HSPF model. Newsletter. Golden: International Ground Water Modeling Center. http://igwmc.mines.edu/ news/spring04news.pdf [Retrieved September 2008].
Fairbanks, J., Panday, S., and Huyakorn, P. S. 2001. Comparisons of linked and fully coupled approaches to simulating conjunctive surface/subsurface flow and their interactions. Seo, B., Poeter, E., and Zheng, C., eds., MODFLOW 2001 and Other Modeling Odysseys, Conference Proceedings, 356-361. Golden.
Goderniaux, P., Brouyère, S., Fowler, H. J., Blenkinsop, S., Therrien, R., Orban, P., and Dassargues, A. 2009. Large scale surface-subsurface hydrological model to assess climate change impacts on groundwater reserves. Journal of Hydrology, 373(1-2), 122-138. [ doi:10.1016/j.jhydrol.2009.04.017]
Goring, D. G. 1994. Kinematic shocks and monoclinal waves in the Waimakariri, a steep, braided, gravel-bed river. Proceedings of the International Symposium on Waves, 336-345. Vancouver: University of British Columbia.
Green, I. R. A., and Stephenson, D. 1986. Criteria for comparison of single event models. Hydrological Sciences Journal, 31(3), 395-409. [doi:10.1080/02626668609491056]
Gupta, H. V., Sorooshian, S., and Yapo, P. O. 1999. Status of automatic calibration for hydrological models: Comparisons with multilevel expert calibration. Journal of Hydrologic Engineering, 4(2), 135-143. [doi:10.1061/(ASCE)1084-0699(1999)4:2(135)]
Ibbitt, R. P., Henderson, R. D., Copeland, J., and Wratt, D. S. 2001. Simulating mountain runoff with meso-scale weather model rainfall estimates: A New Zealand experience. Journal of Hydrology, 239(1-4), 19-32. [doi:10.1016/S0022-1694(00)00351-6]
Jones, J. P., Sudicky, E. A., Brookfield, A. E., and Park, Y. J. 2006. An assessment of the tracer-based approach to quantifying groundwater contributions to stream flow. Water Resources Research, 42(2), W02407. [doi:10.1029/2005WR004130]
Langevin, C., Swain, E., and Wolfert, M. 2005. Simulation of integrated surface-water/ground-water flow and salinity for a coastal wetland and adjacent estuary. Journal of Hydrology, 314(1-4), 212-234. [doi:10.1016/j.jhydrol.2005.04.015]
Legates, D. R., and McCabe, G. J., Jr. 1991. Evaluating use of “goodness-of-fit” measures in hydrological and hydro climatic model validation. Water Resources Research, 35(1), 233-241. [doi:10.1029/1998WR 900018]
Loague, K., and Green, R. E. 1991. Statistical and graphical methods for evaluating solute transport models: Overview and application. Journal of Contaminant Hydrology, 7(1-2), 51-73. [doi:10.1016/0169- 7722(91)90038-3]
Markstrom, S. L., Niswonger, R. G., Regan, R. S., Prudic, D. E., and Barlow, P. M. 2008. GSFLOW-coupled ground-water and surface-water flow model based on the integration of the precipitation-runoff modeling system (PRMS) and the modular ground-water flow model (MODFLOW-2005). Ground-water/Surface- water Book 6, Modeling Techniques. Reston: U. S. Department of the Interior, U. S. Geological Survey.
Martinec, J., and Rango, A. 1989. Merits of statistical criteria for the performance of hydrological models. Journal of the American Water Resources Association, 25(2), 421-432. [doi:10.1111/j.1752-1688. 1989.tb03079.x]
McDonald, M. G., and Harbaugh, A. W. 1988. A modular three-dimensional finite difference ground water flow model. Techniques of Water-Resources Investigations, Book 6. Reston: U. S. Department of the Interior, U. S. Geological Survey. http://pubs.usgs.gov/twri/twri6a1 [Retrieved September 2008].
Nemeth, M. S., and Solo-Gabriele, H. M. 2003. Evaluation of the use of reach transmissivity to quantify    exchange between groundwater and surface water. Journal of Hydrology, 274(1-4), 145-159.  [doi:10.1016/S0022-1694(02)00419-5]
Panday, S., and Huyakorn, P. S. 2004. A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow. Advances in Water Resources, 27(4), 361-382. [doi:10.1016/j. advwatres.2004.02.016]
Pinder, G. F., and Sauer, S. P. 1971. Numerical simulation of flood wave modification due to bank storage effects. Water Resources Research, 7(1), 63-70. [doi:10.1029/WR007i001p00063]
Refsgaard, J. C. 1997. Parameterization, calibration and validation of distributed hydrological models. Journal of Hydrology, 198 (1-4), 69-97. [ doi:10.1016/S0022-1694(96)03329-X]
Servat, E., and Dezetter, A. 1991. Selection of calibration of objective functions in the context of rainfall-runoff modeling in a Sudanese savannah area. Hydrological Science Journal, 36(4), 307-330. [doi:10.1080/02626669109492517]
Smits, F. C., and Hemker, C. 2004. Modeling the interaction of surface-water and groundwater flow by linking Duflow to Microflow. FEM-MODFLOW International Conference on Finite Element Models, Modflow and More. http://www.microfem.com/download/surface-grw.pdf [Retrieved 2008].
Swain, E. D., and Wexler, E. J. 1993. A Coupled Surface-water and Ground-Water Flow Model for Simulation of Stream-Aquifer Interaction, U. S. Geological Survey Open-file Report, 92-138.
Tarboton, D. G. 1997. A new method for the determination of flow directions and contributing areas in grid digital elevation models. Water Resources Research, 33(2), 309-319. [doi:10.1029/96WR03137]
Weglarczyk, S. 1998. The interdependence and applicability of some statistical quality measures of hydrological models. Journal of Hydrology, 206 (1-2), 98-103. [doi:10.1016/S0022-1694(98)00094-8]
Werner, A. D., Gallagher, M. R., and Weeks, S. W. 2006. Regional-scale, fully coupled modeling of stream-aquifer interaction in a tropical catchment. Journal of Hydrology, 328(3-4), 497-510. [ doi:10.1016/j.jhydrol.2005.12.034]

Similar articles
1.Pei-yue LI, Hui QIAN, Jian-hua WU, Jia DING.Geochemical modeling of groundwater in southern plain area of Pengyang County, Ningxia, China[J]. Water Science and Engineering, 2010,3(3): 282-291
2.Peng TIAN, Guang-ju ZHAO, Jing LI, Kun TIAN.Extreme value analysis of streamflow time series in the last half century in the Poyang Lake Basin, China[J]. Water Science and Engineering, 2011,4(2): 121-132
Gen-wei CHENG1;Zhong-bo YU2,3;Chang-sheng LI4;Yong HUANG2,3
Integrated simulation of runoff and groundwater in forest wetland watersheds
[J]. Water Science and Engineering, 2008,1(3): 1-15
4.Shalamu ABUDU, Chun-liang CUI, James Phillip KING, Kaiser ABUDUKADEER.Comparison of performance of statistical models in forecasting monthly streamflow of Kizil River, China[J]. Water Science and Engineering, 2010,3(3): 269-281
5.Fu-quan Ni, Guo-dong LIU, Yao-sheng TAN, Li-ping XU, Yu DENG.Spatial variation of health risk for drinking groundwater in Mingshan County, Ya’an,China[J]. Water Science and Engineering, 2010,3(4): 454-466
6.pengtian.[J]. Water Science and Engineering, 0,(): 121-132
7.Yan ZHU; Yuan-yuan ZHA; Ju-xiu TONG; Jin-zhong YANG.Method of coupling 1-D unsaturated flow with 3-D saturated flow on large scale[J]. Water Science and Engineering, 2011,4(4): 357-373

Copyright by Water Science and Engineering