Water Science and Engineering 2011, 4(1) 24-35 DOI:   10.3882/j.issn.1674-2370.2011.01.003  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
PDF(368KB)
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
evapotranspiration
SEBAL model
MODIS
remote sensing
sensible heat flux
Haihe Basin  
Authors
ZHANG Xiao-Chun
PubMed
Article by Zhang,X.C

Simplified SEBAL method for estimating vast areal evapotranspiration with MODIS data

Xiao-chun ZHANG1, 2, Jing-wei WU*2, Hua-yi WU1, Yong LI3

1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, P. R. China
2. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University,   Wuhan 430070, P. R. China
3. School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, P. R. China

Abstract

The SEBAL (surface energy balance algorithm for land) model provides an efficient tool for estimating the spatial distribution of evapotranspiration, and performs a simple adjustment procedure to calculate sensible heat flux using the wind speed data set from only one weather station. This paper proposes a simplified method to modify the traditional SEBAL model for calculating the 24-hour evapotranspiration ( ) in the Haihe Basin with data from 34 weather stations. We interpolated the wind speeds using the inverse distance weighting method to establish a wind field and then used it to calculate the friction velocity directly. This process also simplifies the iterative computation process of sensible heat flux. To validate the feasibility of this simplified method, we compared the results with those obtained with an appropriate but more complex method proposed by Tasumi, which separates a vast area into several sub-areas based on the weather conditions, and runs the SEBAL model separately in each sub-area. The results show good agreement between the evapotranspiration generated by the two methods, with a coefficient of determination (r2) of 0.966, which indicates the feasibility of estimating evapotranspiration over a large region with the simplified method.   

Keywords evapotranspiration   SEBAL model   MODIS   remote sensing   sensible heat flux   Haihe Basin    
Received 2010-09-09 Revised 2010-11-02 Online: 2011-03-30 
DOI: 10.3882/j.issn.1674-2370.2011.01.003
Fund:

This work was supported by the National Natural Science Foundation of China (Grant No. 50809050) and the Fundamental Research Funds for the Central Universities (Grant No. 2101024).

Corresponding Authors: Jing-wei WU
Email: jingweifr@gmail.com
About author:

References:

Ahmad, M. D., Biggs, T., Turral, H., and Scott, C. A. 2006. Application of SEBAL approach and MODIS time-series to map vegetation water use patterns in the data scarce Krishna River Basin of India. Water Science and Technology, 53(10), 83-90. [doi:10.2166/wst.2006.301]
Allen, R. G. 1996. Assessing integrity of weather data for reference evapotranspiration estimation. Journal of Irrigation and Drainage Engineering, 122(2), 97-106. [doi:10.1061/(ASCE)0733-9437(1996)122:2(97)]
Allen, R. G., Tasumi, M., and Trezza, R. 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) model. Journal of Irrigation and Drainage Engineering, 133(4), 380-394. [doi:10.1061/(ASCE)0733-9437(2007)133:4(380)]
Bastiaanssen, W. G. M. 1995. Regionalization of Surface Flux Densities and Moisture Indicators in Composite Terrain: A Remote Sensing Approach under Clear Skies in Mediterranean Climates. Ph. D. Dissertation. Wageningen: Wageningen Agricultural University.
Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., and Holtslag, A. A. M. 1998a. A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. Journal of Hydrology, 212-213, 198-212. [doi:10.1016/S0022-1694(98)00253-4]
Bastiaanssen, W. G. M., Pelgrum, H., Wang, J., Ma, Y., Moreno, J. F., Roerink, G. J., and van der Wal, T. 1998b. A remote sensing surface energy balance algorithm for land (SEBAL): 2. Validation. Journal of Hydrology, 212-213, 213-229. [ doi:10.1016/S0022-1694(98)00254-6]
Bastiaanssen, W. G. M., and Bos, M. G. 1999. Irrigation performance indicators based on remotely sensed data: A review of literature. Irrigation and Drainage Systems, 13(4), 291-311. [doi:10.1023/A:1006355 315251]
Bastiaanssen, W. G. M. 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229(1-2), 87-100. [ doi:10.1016/S0022-1694(99)00202-4]
Bastiaanssen, W. G. M., Noordman, E. J. M., Pelgrum, H., Davids, G., Thoreson, B. P., and Allen, R. G. 2005. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of Irrigation and Drainage Engineering, 131(1), 85-93. [doi:10.1061/(ASCE)0733- 9437(2005)131:1(85)]
Bastiaanssen, W. G. M., Thoreson, B., Clark, B., and Davids, G. 2010. Discussion of “Application of SEBAL Model for Mapping Evapotranspiration and Estimating Surface Energy Fluxes in South-Central Nebraska” by Ramesh K. Singh, Ayse Irmak, Suat Irmak, and Derrel L. Martin. Journal of Irrigation and Drainage Engineering, 136(4), 282-283. [doi:10.1061/(ASCE)IR.1943-4774.0000216]
Granger, R. J. 1997. Comparison of surface and satellite-derived estimates of evapotranspiration using a feedback algorithm. Kite, G. W., Pietroniro, A., and Schultz, T. J., eds., Applications of Remote Sensing in Hydrology, Proceedings of the 3rd International Workshop NHRI Symposium. Greenbelt: NASA Goddard Space Flight Center.
Hemakumara, H. M., Chandrapala, L., and Moene, A. 2003. Evapotranspiration fluxes over mixed vegetation areas measured from large aperture scintillometer. Agricultural Water Management, 58(2), 109-122. [doi:10.1016/S0378-3774(02)00131-2]
McCabe, M. F., and Wood, E. F. 2006. Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors. Remote Sensing of Environment, 105(4), 271-285. [doi:10.1016/j.rse.2006. 07.006]
Morse, A., Tasumi, M., Allen, R. G., and Kramber, W. J. 2000. Application of the SEBAL Methodology for Estimating Consumptive Use of Water and Streamflow Depletion in the Bear River Basin of Idaho Through Remote Rensing. Boise: Idaho Department of Water Resources.
Singh, R. K., Irmak, A., Irmak, S., and Martin, D. L. 2008. Application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska. Journal of Irrigation and Drainage Engineering, 134(3), 273-285. [doi:10.1061/(ASCE)0733-9437(2008)134:3(273)]
Starks, P. J., Norman, J. M., Blad, B. L., Walter-Shea, E. A., and Walthall, C. L. 1991. Estimation of shortwave hemispherical reflectance (albedo) from bidirectionally reflected radiance data. Remote Sensing of Environment, 38(2), 123-134. [ doi:10.1016/0034-4257(91)90074-G]
Tasumi, M. 2003. Progress in Operational Estimation of Regional Evapotranspiration Using Satellite Imagery. Ph. D. Dissertation. Moscow: University of Idaho.
Tasumi, M., Allen, R. G., and Trezza, R. 2008. At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance. Journal of Hydrologic Engineering, 13(2), 51-63. [doi:10.1061/(ASCE)1084-0699(2008)13:2(51)]
Vidal, A., and Perrier, A. 1989. Analysis of a simplified relation used to estimate daily evapotranspiration from satellite thermal IR data. International Journal of Remote Sensing, 10(8), 1327-1337.
Zhang, S. W., Lei, Y. P., Li, H. J., and Wang, Z. 2010. Temporal-spatial variation in crop evapotranspiration in Hebei Plain, China. Journal of Food, Agriculture and Environment, 8(2), 672-677.

Similar articles
1.Yong-hong YANG*1, 2 ;Zhan-yu ZHANG1;Xin-yi XIANG3.Spatial variation of reference crop evapotranspiration on Tibetan Plateau[J]. Water Science and Engineering, 2009,2(1): 112-120
2.Ouyang Rulin*1, 2;Ren Liliang1;Cheng Weiming2;Yu Zhongbo1.Application of hydrological models in a snowmelt region of Aksu River Basin[J]. Water Science and Engineering, 2008,1(4): 1-13
3.Wen-xian ZHANG*1, 2;Zhan-yu ZHANG2;Kang WANG3.Experimental study and simulations of infiltration in evapotranspiration landfill covers [J]. Water Science and Engineering, 2009,2(3): 96-109
4.Xu Junzeng1, Peng Shizhang*1,2, Luo Yufeng1, Jiao Xiyun1.Tomato and cowpea crop evapotranspiration in an unheated greenhouse[J]. Water Science and Engineering, 2008,1(2): 112-120
5.Che-sheng ZHAN; Jie ZHAO; Hui-xiao WANG; Jian YIN.Quantitative estimation of land surface evapotranspiration in Taiwan based on MODIS data[J]. Water Science and Engineering, 2011,4(3): 237-245

Copyright by Water Science and Engineering