Water Science and Engineering 2011, 4(4) 421-430 DOI:   10.3882/j.issn.1674-2370.2011.04.006  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
PDF(14042KB)
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
large eddy simulation (LES)
dunes
turbulent boundary layer
flow separation
Authors
LU -jun
WANG Ling-ling
HAI -zhu
ZHEN Zhen-yu
PubMed
Article by Lu,.J
Article by Wang,L.L
Article by Hai,.Z
Article by Zhen,Z.Y

Large eddy simulation of water flow over series of dunes

Jun LU1, 2, Ling-ling WANG*1, Hai ZHU1, Hui-chao DAI1

1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, P. R. China

2. Zhangjiagang Water Conservancy Bureau, Zhangjiagang 215600, P. R. China  

Abstract

Large eddy simulation was used to investigate the spatial development of open channel flow over a series of dunes. The three-dimensional filtered Navier-Stokes (N-S) equations were numerically solved with the fractional-step method in sigma coordinates. The subgrid-scale turbulent stress was modeled with a dynamic coherent eddy viscosity model proposed by the authors. The computed velocity profiles are in good agreement with the available experimental results. The mean velocity and the turbulent Reynolds stress affected by a series of dune-shaped structures were compared and analyzed. The variation of turbulence statistics along the flow direction affected by the wavy bottom roughness has been studied. The turbulent boundary layer in a complex geographic environment can be simulated well with the proposed large eddy simulation (LES) model.

Keywords large eddy simulation (LES)   dunes   turbulent boundary layer   flow separation  
Received 2011-01-07 Revised 2011-08-20 Online: 2011-12-30 
DOI: 10.3882/j.issn.1674-2370.2011.04.006
Fund:

This work was supported by the National Natural Science Foundation of China (Grant No. 51179058), the National Science Fund for Distinguished Young Scholars (Grants No. 51125034 and 50925932), the Special Fund for Public Welfare of the Water Resources Ministry of China (Grant No. 201201017), and the 111 Project (Grant No. B12032).

Corresponding Authors: Ling-ling WANG
Email: wanglingling@hhu.edu.cn
About author:

References:

Bardina, J., Ferziger, J. H., and Reynolds, W. C. 1980. Improved subgrid-scale model for large-eddy simulation. Proceedings of the 13th Fluid and Plasma Dynamics Conference. Snowmass: American Institute of Aeronautics and Astronautics.
Dejoan, A., and Leschziner, M. A. 2004. Large eddy simulation of periodically perturbed separated flow over a backward-facing step. Fluid and Heat Flow, 25(4), 581-592. [doi:10.1016/j.ijheatfluidflow.2004. 03.004]
Fourniostis, N. T., Toleris, N. E., and Demetracopoulos, A. C. 2009. Numerical computation of turbulence development in flow over sand dunes. Advances in Water Resources and Hydraulic Engineering, Proceedings of 16th IAHR-APD and 3rd IAHR-ISHS, 943-848. Beijing: Tsinghua University Press. [doi:10.1007/978-3-540-89465-0_148]
Germano, M., Piomelli, U., Moin, P., and Cabot, W. H. 1991. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids, 3(7), 1760-1765. [doi:10.1063/1.857955]
Huai, W. X., Sheng, Y. P., and Komatsu, T. 2003. Hybrid finite analytic solutions of shallow water circulation. Applied Mathematics and Mechanics (English Edition), 24(9), 1081-1088. [doi:1000-0887(2003)09- 0956-07]
Huai, W. X., Li, Z. W., Qian, Z. D., Zeng, Y. H., Han, J., and Peng, W. Q. 2010. Numerical simulation of horizontal buoyant wall jet. Journal of Hydrodynamics, 22(1), 58-65. [doi:10.1016/S1001-6058(09) 60028-7]
Johns, B., Soulsby, R. L., and Xing, J. 1993. A comparison of numerical model experiments of free surface flow over topography with flume and field observations. Journal of Hydraulic Research, 31(2), 215-228. [doi:10.1080/00221689309498846]
Kasagi, N., and Matsunaga, A. 1995. Three-dimensional particle tracking velocimetry measurement of turbulence statistics and energy budget in a backward-facing step flow. Fluid and Heat Flow, 16(6), 477-485. [doi:10.1016/0142-727X(95)00041-N]
Li, C. W., and Ma, F. X. 2003. Large eddy simulation of diffusion of a buoyancy source in ambient water. Applied Mathematical Modeling, 27(8), 649-663. [doi:10.1016/S0307-904X(03)00073-8]
Lilly, D. K. 1992. A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids, 4(3), 633-635. [doi:10.1063/1.858280]
Lin, P. Z., and Li, C. W. 2002. A  -coordinate three-dimensional numerical model for surface wave propagation. International Journal for Numerical Methods in Fluids, 38(11), 1045-1068. [doi:10. 1002/fld.258]
Lu, J., and Wang, L. L. 2008. Numerical study of large eddy structures-separated flows passing sills. Advances in Water Resources and Hydraulic Engineering, Proceedings of 16th IAHR-APD and 3rd IAHR-ISHS, 1795-1799. Beijing: Tsinghua University Press. [doi:10.1007/978-3-540-89465-0_309]
Lu, J., and Wang, L. L. 2009. Comparison of several turbulent models for calculating separated flows passing on sill. Advances in Water Science, 20(2), 255-260. (in Chinese)
Lu, J., Tang, H. W., and Wang, L. L. 2010. A novel dynamic eddy model and its application to LES of turbulent jet with free surface. Science in China, Ser. G, 53(9), 1671-1680. [doi:10.1007/s11433- 010-4077-z]
Lyn, D. A. 1993. Turbulence measurement in open channel flows over artificial bedforms. Journal of Hydraulic Engineering, 119(3), 306-326. [doi:10.1061/(ASCE)0733-9429(1993)119:3(306)]
Mendoza, C., and Shen, H. W. 1990. Investigation of turbulent flow over dunes. Journal of Hydraulic Engineering, 116(4), 459-477. [doi:10.1061/(ASCE)0733-9429(1990)116:4(459)]
Nelson, J. M., and Smith, J. D. 1993. Mean flow and turbulence over two-dimensional bed forms. Water Resources Research, 29(12), 3925-3953. [doi:10.1029/93WR01932]
Ojha, S. P., and Mazumder, B. S. 2008. Turbulence characteristics of flow region over a series of 2-D dune shaped structures. Advance in Water Resources, 31(3), 561-576. [doi:10.1016/j.advwatres.2007.12.001]
Peric, M., Ruger, M., and Scheuerer, G. 1988. Calculation of the Two-dimensional Turbulent Flow over a Sand Dune Model. Erlangen: University of Erlangen.
Wiberg, P. L., and Nelson, J. M. 1992. Unidirectional flow over asymmetric and symmetric ripples. Geophysical Research, 97(8), 12745-12761. [doi:10.1029/92JC01228]
Wilcox, D. C. 1993. Turbulence Modeling for CFD. La Canada: DCW Industries.
Yoon, J. Y., Patel, V. C., and Ettema, R. 1995. Numerical model of flow in ice-covered channels. Journal of Hydraulic Engineering, 122(1), 19-26. [doi:10.1061/(ASCE)0733-9429(1996)122:1(19)]

Similar articles

Copyright by Water Science and Engineering