Water Science and Engineering 2012, 5(2) 191-201 DOI:   10.3882/j.issn.1674-2370.2012.02.007  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
soil hydraulics
sloping farmland
soil erosion
soil surface roughness
 hydraulic roughness coefficient
Reynolds number
tillage practice
Article by Zicheng,.Z
Article by Shu-qin,.H
Article by Fa-qi,.W

Relationship between soil surface roughness and hydraulic roughness coefficient on sloping farmland

Zi-cheng ZHENG1, 2, 3, Shu-qin HE*1, Fa-qi WU4

 1. College of Resources and Environment, Sichuan Agricultural University, Chengdu 611130, P. R. China

2. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, P. R. China
3. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Water and Soil Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, P. R. China
4. College of Resources and Environment, Northwest A&F University, Yangling 712100, P. R. China


The soil surface roughness and hydraulic roughness coefficient are important hydraulic resistance characteristic parameters. Precisely estimating the hydraulic roughness coefficient is important to understanding mechanisms of overland flow. Four tillage practices, including cropland raking, artificial hoeing, artificial digging, and straight slopes, were considered based on the local agricultural conditions to simulate different values of soil surface roughness in the Loess Plateau. The objective of this study was to investigate the relationship between the soil surface roughness and hydraulic roughness coefficient on sloping farmland using artificial rainfall simulation. On a slope with a gradient of 10°, a significant logarithmic function was developed between the soil surface roughness and Manning’s roughness coefficient, and an exponential function was derived to describe the relationship between the soil surface roughness and Reynolds number. On the slope with a gradient of 15°, a significant power function was developed to reflect the relationship between the soil surface roughness and Manning’s roughness coefficient, and a linear function was derived to relate the soil surface roughness to the Reynolds number. These findings can provide alternative ways to estimate the hydraulic roughness coefficient for different types of soil surface roughness.

Keywords soil hydraulics   sloping farmland   soil erosion   soil surface roughness    hydraulic roughness coefficient   Reynolds number   tillage practice  
Received 2011-08-20 Revised 2011-10-24 Online: 2012-06-26 
DOI: 10.3882/j.issn.1674-2370.2012.02.007

the National Natural Science Foundation of China (Grant No. 40901138), the Project of the State Key Laboratory of Earth Surface Processes and Resource Ecology (Grant No. 2008-KF-05), and the Project of the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau (Grant No. 10501-283).

Corresponding Authors: Shu-qin HE
Email: angelhsq@163.com
About author:

Abrahams, A. D., and Parsons, A. J. 1991. Resistance to overland flow on desert pavement and its implications for sediment transport modeling. Water Resources Research, 27(8), 1827-1836. [doi:10.1029/91WR01010]
Asadi, H., Ghadiri, H., Rose, C. W., Yu, B., and Hussein, J. 2007. An investigation of flow driven soil erosion processes at low stream powers. Journal of Hydrology, 342, 134-142. [doi:10.1016/j.jhydrol. 2007.05.019]
Bagnold, R. A. 1941. The Physics of Blown Sands and Desert Dunes. New York: Dover Publications Inc.
Bertuzzi, P., Rauws, G., and Corrault, D. 1990. Testing roughness indices to estimate soil surface roughness changes due to simulated rainfall. Soil and Tillage Research, 17(1-2), 87-99. [doi:10.1016/0167- 1987(90)90008-2]
Brough, D. L., and Jarret, A. R. 1992. Simple technique for approximating surface storage of slit-tilled fields. Transactions of the ASAE, 35(3), 885-890.
Cooperation Research Group on Chinese Soil Taxonomy (CRGCST). 2001. Chinese Soil Taxonomy. Beijing: Science Press.
Cremers, N. H. D. T., van Dijk, P. M., De Roo, A. P. J., and Verzandvoort, M. A. 1996. Spatial and temporal variability of soil surface roughness and the application in hydrological and soil erosion modeling. Hydrological Processes, 10(8), 1035-1047. [doi:10.1002/(SICI)1099-1085(199608)10:8<1035::AID- HYP409>3.3.CO;2-R]
Darboux, F., Dary, P., Gascuel-Odoux, C., and Huang, C. H. 2001. Evolution of soil surface roughness and flow path connectivity in overland flow experiments. Catena, 46(2-3), 125-139. [doi:10.1016/S0341- 8162 (01)00162-X]
De Roo, A. P. J., Wesseling, C. G., and Ritsema, C. J. 1996. LISEM: A single event physically based hydrological and soil erosion model for drainage basins, 1: Theory, input and output. Hydrological Processes, 10(8), 1107-1117. [doi:10.1002/(SICI)1099-1085(199608)10:8<1107::AID-HYP415> 3.3.CO;2-4]
García Moreno, R., Díaz Álvarez, M. C., Tarquis Alonso, A., Barrington, S., and Saa Requejo, A. 2008. Tillage and soil type effects on soil surface roughness at semiarid climatic conditions. Soil and Tillage Research, 98 (1), 35-44. [doi:10.1016/j.still.2007.10.006]
Gilley, J. E., Kottwitz, E. R., and Wieman, G. A. 1992. Darcy-Weisbach roughness coefficients for gravel and cobble surfaces. Journal of Irrigation and Drainage Engineering, 118(1), 104-112. [doi:10.1061/ (ASCE)0733-9437(1992)118:1(104)]
Gómez, J. A., and Nearing, M. A. 2005. Runoff and sediment losses from rough and smooth soil surfaces in a laboratory experiment. Catena, 59(3), 253-266. [doi:10.1016/j.catena.2004.09.008]
Govers, G. 1990. Empirical relationships for the transport formulae of over flow. Erosion, Transport and Deposition Processes, Proceedings of a Workshop Held at Jerusalem, Israel, IAHS Publication No. 189, 45-63.Wallingford: IAHS.
Govers, G., Takken, I., and Helming, K. 2000. Soil roughness and overland flow. Agronomie, 20(2), 131-146. [doi:10.1051/agro:2000114]
Hairsine, P. B., Moran, C. J., and Rose, C. W. 1992. Recent developments regarding the influence of soil surface characteristics on overland flow and erosion. Australian Journal of Soil Research, 30(3), 249-264. [doi:10.1071/SR9920249]
Hansen, B., Schønning, P., and Sibbesen, E. 1999. Roughness indices for estimation of depression storage capacity of tilled soil surfaces. Soil and Tillage Research, 52(1-2), 103-111. [doi:10.1016/S0167-1987 (99)00061-6]
Hessel, R., Jetten, V., and Zhang, G. H. 2003. Estimating Manning’s n for steep slopes. Catena, 54(1-2), 77-91. [doi:10.1016/S0341-8162(03)00058-4]
Huang, C. H. 1998. Quantification of soil microtopography and surface roughness. Baveye, P., Parlange, J. Y., Tewart, B. A., eds., Fractals in Soil Science, 153-168. Boca Raton: CRC Press.
Huang, C. H., Gascuel-Odoux, C., and Craas-Cayot, S. 2001. Hillslope topographic and hydrologic effects on overland flow and erosion. Catena, 46(2), 177-188. [doi:10.1016/S0341-8162(01) 00165-5]
Kamphorst, E. C., and Jetenet, L. Guérif, J., Pitkänen, J., Iversen, B. V., Douglas, J. T., and Paz, A. 2000. Predicting depressional storage from soil surface roughness. Soil Science Society of America Journal, 64(5), 1749-1758. [doi:10.2136/sssaj2000.6451749x]
Lane, S. N. 2005. Roughness-time for a re-evaluation? Earth Surface Processes and Landforms, 30(2), 251-253. [doi:10.1002/esp.1208]
Lawrence, D. S. L. 2000. Hydraulic resistance in overland flow during partial and marginal surface inundation: Experimental observations and modeling. Water Resources Research, 36(8), 2381-2393. [doi:10.1029/ 2000WR900095]
Linden, D. R., and van Doren, D. M., Jr. 1986. Parameter for characterizing tillage-induced soil surface roughness. Soil Science Society of America Journal, 50(6), 1561-1565.
Liu, G. S. 1996. Soil Physical and Chemical Analysis and Description of Soil Profiles. Beijing: China    Standard Press.
Luo, R. T., Zhang, G. H., and Shen, R. C. 2010. Study on optimal length for measuring velocity of overland flow with dye tracing. Journal of China Hydrology, 30(3), 5-9.
Merrill, S. D., Huang, C. H., Zobeck, T. M., and Tanaka, D. L. 2001. Use of the chain set for scale sensitive and erosion relevant measurement of soil surface roughness. Stott, D. E., Mohtar, R. H., and Steinhardt, G. C., eds., Sustaining the Global Farm, 10th International Soil Conservation Organisation Meeting, 594-600. West Lafayette: International Soil Conservation Organization.
Moore, D. C., and Singer, M. J. 1990. Crust formation effects on soil erosion processes. Soil Science Society of America Journal, 54(4), 1117-1123. [doi:10.2136/sssaj1990.03615995005400040033x]
Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., Chisci, G., Torri, D., and Styczen, M. E. 1998. The European soil erosion model (EURO SEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23(6), 527-544. [doi:10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868> 3.0.CO; 2-5]
Nearing, M. A., Foster, G. R., Lane, L. J., and Finkner, S. C. 1989. A process-based soil erosion model for USDA-water erosion predication project technology. Transactions of the ASAE, 35(5), 1587-1593.
Nearing, M. A., Simanton, J. R., Norton, L. D., Bulygin, S. J., and Stone, J. 1999. Soil erosion by surface water flow on a stony, semiarid hillslope. Earth Surface Processes and Landforms, 24(8), 677-686. [doi: 10.1002/(SICI)1096-9837(199908)24:8<677::AID-ESP981>3.3.CO;2-T]
Parsons, A. J., Abrahams, A. D., and Wainwright, J. 1994. On determining resistance to interrill overland flow. Water Resources Research, 30(12), 3515-3521. [doi:10.1029/94WR02176]
Planchon, O., Esteves, M., Silvera, N., and Lapetite, J. M. 2001. Microrelief induced by tillage: Measurement and modeling of surface storage capacity. Catena, 46, 141-157. [doi:10.1016/S0341- 8162(01)00163-1]
Reed, J. R., Watts, R. T., Warner, J. C., and Huebner, R. S. 1995. Manning’s n from an extended rainfall-runoff data set on a concrete surface. Espey, W. H., Jr., and Combs, P. G., eds., Water Resources Engineering: Proceedings of First International Conference. San Antonio: ASCE.
Romkens, M. J. M., and Wang, J. Y. 1986. Effect of tillage on surface roughness. Transactions of the ASABE, 29(2), 429-433.
Sadeghian, M. R., and Mitchell, J. K. 1990. Response of surface roughness storage to rainfall on tilled soil. Transactions of the ASAE, 33(6), 1875-1881.
Smith, M. W., Cox, N. J., and Bracken, L. J. 2007. Applying flow resistance equations to overland flows. Progress in Physical Geography,31(4), 363-387. [doi:10.1177/0309133307081289]
Vidal Vázquez, E., Vivas Miranda, J. G., and Paz Gónzalez, A. 2005. Characterizing anisotropy and heterogeneity of soil surface microtopography using fractal models. Ecological Modelling, 182(3-4), 337-353. [doi:10.1016/j.ecolmodel.2004.04.012]
Weltz, M. A., Arslan, A. B., and Lane, L. J. 1992. Hydraulic roughness coefficients for native rangelands. Journal of Irrigation and Drainage Engineering, 118(5), 776-790. [doi:10.1061/(ASCE)0733-9437(1992) 118:5(776)]
Wong, T. S. W. 1997. Discussion: Search for physically based runoff model—A hydrologic EI Dorado? Journal of Hydraulic Engineering, 123(9), 828-830. [doi:10.1061/(ASCE)0733-9429(1997)123: 9(828))]
Wong, T. S. W. 2002. Use of resistance coefficient derived from single planes to estimate time of concentration of two-plane systems. Journal of Hydraulic Research, 40(1), 99-104. [doi:10.1080/ 00221680209499878]
Zhang, G. H., Tang, M. K., and Zhang, X. C. 2009. Temporal variation in soil detachment under different land uses in the Loess Plateau of China. Earth Surface Processes and Landforms, 34(9), 1302-1309. [doi: 10.1002/esp.1827]
Zhang, G. H., Luo, R. T., Cao, Y., Shen, R. C, and Zhang, X. C. 2010a. Impact of sediment load on Manning coefficient in supercritical shallow flow on steep slopes. Hydrological Processes, 24(26), 3909-3914. [doi:10.1002/hyp.7892]
Zhang, G. H., Shen, R. C., Luo, R. T., Cao, Y., and Zhang, X. C. 2010b. Effects of sediment load on hydraulics of overland flow on steep slopes. Earth Surface Processes and Landforms, 35(15), 1811-1819. [doi: 10.1002/esp.2019]
Zhang, G. S., Chan, K. Y., Oates, A., Heenan, D. P., and Huang, G. B. 2007. Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage. Soil and Tillage Research, 92(1-2), 122-128. [doi:10.1016/j.still.2006.01.006]
Zheng, Z. C., He, S. Q., and Wu, F. Q. 2009. Splash erosion effects of tillage practices on soil surface roughness under different rainfall conditions. Transactions of the CSAE, 25(11), 103-108. (in Chinese)
Similar articles
1.Wen-hai ZHANG*1, Xing-nan ZHANG1, Zhi-dong GAO2.Factor value determination and applicability evaluation of universal soil loss equation in granite gneiss region[J]. Water Science and Engineering, 2009,2(2): 87-97

Copyright by Water Science and Engineering