Water Science and Engineering 2012, 5(3) 278-290 DOI:   10.3882/j.issn.1674-2370.2012.03.004  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
stream restoration
bacterial technology
extended activated sludge model no. 1 (ASM1)
mass fraction
Xuxi River
SONG Ya-Jing
Article by Song,Y.J

Extended activated sludge model no. 1 (ASM1) for simulating biodegradation process using bacterial technology

Ya-jing SONG*1, Yue-bo XIE1, Doddi YUDIANTO2

1. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, P. R. China
2. Civil Engineering Department, Parahyangan Catholic University, West Java 112548, Indonesia


Phosphorus is one of the most important nutrients required to support various kinds of biodegradation processes. As this particular nutrient is not included in the activated sludge model no. 1 (ASM1), this study extended this model in order to determine the fate of phosphorus during the biodegradation processes. When some of the kinetics parameters are modified using observed data from the restoration project of the Xuxi River in Wuxi City, China, from August 25 to 31 in 2009, the extended model shows excellent results. In order to obtain optimum values of coefficients of nitrogen and phosphorus, the mass fraction method was used to ensure that the final results were reasonable and practically relevant. The temporal distribution of the data calculated with the extended ASM1 approximates that of the observed data.

Keywords stream restoration   bacterial technology   extended activated sludge model no. 1 (ASM1)   mass fraction   Xuxi River  
Received 2011-05-20 Revised 2011-12-13 Online: 2012-09-25 
DOI: 10.3882/j.issn.1674-2370.2012.03.004
Corresponding Authors: Ya-jing SONG
Email: syj111188@sina.com
About author:

Akgerman, A., Autenrieth, R., and Bonner, J. 1992. In situ remediation through contaminant mobilization by vacuum stripping combined with biodegradation. Journal of Hazardous Materials, 32(2-3), 323-382. [doi:10.1016/0304-3894(92)85101-6]
Arzayus, K. M., and Canuel, E. A. 2005. Organic matter degradation in sediments of the York River estuary: Effects of biological vs. physical mixing. Geochimica et Cosmochimica Acta, 69(2), 455-464. [doi:10.1016/j.gca.2004.06.029]
Awadallah, R. M., Soltan, M. E., Shabeb, M. S. A., and Moalla, S. M. N. 1998. Bacterial removal of nitrate, nitrite and sulphate in wastewater. Water Research, 32(10), 3080-3084. [doi:10.1016/S0043-1354(98) 00069-4]
Chen, G., and White, P. A. 2004. The mutagenic hazards of aquatic sediments: A review. Reviews in Mutation Research, 567(2-3), 151-225. [doi:10.1016/j.mrrev.2004.08.005]
Crites, R. W., Middlibrooks, E. J., and Reed, S. C. 2006. Natural Wastewater Treatment Systems. Boca Raton: CRC Press.
Garnier, G. J., Némry, J. N., Billen, G., and Théry, S. 2005. Nutrient dynamics and control of eutrophication in the Marne River system: Modelling the role of exchangeable phosphorus. Journal of Hydrology,304(1-4), 397-412. [doi:10.1016/j.jhydrol.2004.07.040]
Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, C., Marais, G. V. R., and Van Loosdrecht, M. C. M. 1999. Activated sludge model no. 2D, ASM2D. Water Science and Technology, 39(1), 165-182. [doi:10.1016/ S0273-1223(98)00829-4]
Henze, M., Gujer, W., and Takashi, M. 2000. Activated Sludge Models ASM1, ASM2, ASM2D and ASM3 (Scientific and Technical Report). London: IWA Publishing.
Jeppsson, U. 1996. A General Description of the Activated Sludge Model No. 1 (ASM1): Modelling Aspects of Wastewater Treatment Processes. Lund: Lund Institute of Technology, Lund University.
Juang, D. F., and Chen, P. C. 2007. Treatment of polluted river water by a new constructed wetland. International Journal of Environmental Science and Technology, 4(4), 481-488.
Liao, J., Xie, Y. B., Zong, X. C., and Cao, G. J. 2008. Pilot study on treatment of complicated chemical industrial effluent with CABRM process. Pollution Control Technology, 21(1), 11-15. (in Chinese)
Malmqvist, B., and Rundle, S. 2002. Threats to the running water ecosystems of the world. Environmental Conservation, 29(2), 134-153. [doi:10.1017/S0376892902000097]
Manning, R. 1891. On the flow of water in open channels and pipes. Transactions of the Institution of Civil Engineers of Ireland, 20, 161-207.
Maryns, F., and Bauwens, W. 1997. The application of the activated sludge model no. 1 to a river environment, Water Science and Technology, 36(5), 201-208. [doi:10.1016/S0273-1223(97)00475-7]
Nie, Q. Y., Xie, Y. B., Zhuang, J., and She, L. L. 2008. Cyanobacteria control using microorganism. World Sci-Tech Research and Development, 30(4), 430-432. (in Chinese)
Reichert, P., Borchardt, D., Henze, M., Rauch, W., Shanahan, P., Somlyódy, L., and Vanrolleghem, P. 2001. River water quality model no. 1 (RWQM1), II: biochemical process equations. Water Science and Technology, 43(5), 11-30.
Richardson, C. J., and Qian, S. S. 1999. Long-term phosphorus assimilative capacity in freshwater wetlands: A new paradigm for sustaining ecosystem structure and function. Environmental Science and Technology, 33(10), 1545-1551. [doi:10.1021/es980924a]
Schnoor, J. L. 1996. Environmental Modeling: Fate and Transport of Pollutants in Water, Air, and Soil. New York: John Wiley and Sons.
Stamou, A. I. 1994. Modelling oxidation ditches using the IAWPRC model with hydrodynamic effects. Water Science and Technology,30(2), 185-192.
Stamou, A. I. 1997. Modelling of oxidation ditches using an open channel flow 1-D advection-dispersion equation and ASM1 process description. Water Science and Technology, 36(5), 269-276. [doi:10.1016/ S0273-1223(97)00483-6]
Streeter, H. W., and Phelps, E. B. 1925. A study of the pollution and natural purification of the Ohio River, III: Factors concerned in the phenomena of oxidation and reaeration. Public Health Bulletin No. 146. Washionshon: U.S. Department of Health, Education, and Welfare, Public Health Service.
Wallis, S., and Manson, R. 2005. On the theoretical prediction of longitudinal dispersion coefficients in a compound channel. Water Quality Hazards and Dispersion of Pollutants, 69-84. Springer.
Walsh, C. J., Roy, A. H., Feminella, J. W., Cottingham, P. D., Groffman, P. M., and Morgan II, R. P. 2005. The urban stream syndrome: Current knowledge and the search for a cure. Journal of the North American Benthological Society, 24(3), 706-723. [doi:10.1899/0887-3593(2005)024[0706:TUSSCK]2.0.CO;2]
Wilson, S. C., and Jones, K. C. 1993. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): A review. Environmental Pollution, 81(3), 229-249. [doi:10.1016/0269-7491(93) 90206-4]
Yudianto, D., and Xie, Y. B. 2010. Influences of limited ammonium nitrogen and water temperature on the urban stream restoration using bacterial technology: View from the perspective of numerical modeling. Journal of Water Resource and Protection, 2(3), 227-234. [doi:10.4236/jwarp.2010.23026]
Zhou, J. B., Jiang, M. M., Chen, B., and Chen, G. Q. 2007. Emergy evaluations for constructed wetland and conventional wastewater treatments. Communications in Nonlinear Science and Numerical Simulation, 14(4), 1781-1789. [doi:10.1016/j.cnsns.2007.08.010]
Similar articles
1.Dongkyun IM; Hyeongsik KANG.Two-dimensional physical habitat modeling of effects of habitat structures on urban stream restoration[J]. Water Science and Engineering, 2011,4(4): 386-395

Copyright by Water Science and Engineering