Water Science and Engineering 2012, 5(4) 361-374 DOI:   10.3882/j.issn.1674-2370.2012.04.001  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
PDF(983KB)
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
Taihu Lake
Microcystis bloom
water temperature
nutrients
climate change
Authors
Lin-lin CAI
Guang-wei ZHU
Meng-yuan ZHU
Hai XU
Bo-qiang QIN
PubMed
Article by Lin-lin CAI
Article by Guang-wei ZHU
Article by Meng-yuan ZHU
Article by Hai XU
Article by Bo-qiang QIN

Effects of temperature and nutrients on phytoplankton biomass during bloom seasons in Taihu Lake

Lin-lin CAI1, 2, Guang-wei ZHU*1, Meng-yuan ZHU1, Hai XU1, Bo-qiang QIN1

1. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China
2. Wuxi Taihu Lake Management Company Limited, Wuxi 214063, P. R. China

Abstract

Long-term variations of phytoplankton chlorophyll-a (Chl-a), nutrients, and suspended solids (SS) in Taihu Lake, a large shallow freshwater lake in China, during algal bloom seasons from May to August were analyzed using the monthly investigated data from 1999 to 2007. The effective accumulated water temperature (EAWT) in months from March to June was calculated with daily monitoring data from the Taihu Laboratory for Lake Ecosystem Research (TLLER). The concentrations of Chl-a and nutrients significantly decreased from Meiliang Bay to Central Lake. Annual averages of the total nitrogen (TN), total phosphorus (TP), and Chl-a concentrations, and EAWT generally increased in the nine years. In Meiliang Bay, the concentration of Chl-a was significantly correlated with EAWT, ammonia nitrogen ( ), TN, the soluble reactive phosphorus (SRP), TP, and SS. In Central Lake, however, the concentration of Chl-a was only correlated with EAWT, TP, and SS. Multiple stepwise linear regression revealed that EAWT, dissolved total phosphorus (DTP), and TP explained 99.2% of the variation of Chl-a in Meiliang Bay, and that EAWT,  , and TP explained 98.7% of the variation of Chl-a in Central Lake. Thus EAWT is an important factor influencing the annual change of phytoplankton biomass. Extreme climate change, such as extremely hot springs or cold springs, could cause very different bloom intensities in different years. It is also suggested that both nutrients and EAWT played important roles in the growth of phytoplankton in Taihu Lake. The climate factors and nutrients dually controlled the risk of harmful algal blooms in Taihu Lake. Cutting down phosphorus and nitrogen loadings from catchments should be a fundamental strategy to reduce the risk of blooms in Taihu Lake.

Keywords Taihu Lake   Microcystis bloom   water temperature   nutrients   climate change  
Received 2011-11-14 Revised 2012-05-28 Online: 2012-12-29 
DOI: 10.3882/j.issn.1674-2370.2012.04.001
Fund:

This work was supported by the National Natural Science Foundation of China (Grants No. 51279194 and 41230744) and the External Cooperation Program of the Chinese Academy of Sciences (Grant No. GJHZ1214).

Corresponding Authors: Guang-wei ZHU
Email: gwzhu@niglas.ac.cn
About author:

References:
Aberle, N., Lengfellner, K., and Sommer, U. 2007. Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming. Oecologia, 150(4), 668-681. [doi: 10.1007/s00442-006-0540-y]
Bunting, E. S. 1976. Accumulated temperature and maize development in England. The Journal of Agricultural Science, 87(3), 577-583. [doi:10.1017/S0021859600033207]
Cao, H. S., Tao, Y., Kong, F. X., and Yang, Z. 2008. Relationship between temperature and cyanobacterial recruitment from sediments in laboratory and field studies. Journal of Freshwater Ecology, 23(3), 405-412. [doi:10.1080/02705060.2008.9664217]
Chen, Y. W., Chen, K. N., and Hu, Y. H. 2006. Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method. Journal of Lake Sciences, 18(5), 550-552.  (in Chinese).
Chen, Y. W., Qin, B., Teubner, K., and Dokulil, M. K. 2003. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. Journal of Plankton Research, 25(1), 445-453. [doi:10.1093/plankt/25.4.445]
Duan, H. T., Ma, R. H., Xu, X. F., Kong, F. X., Zhang, S. X., Kong, W. J., Hao, J. Y., and Shang, L. L. 2009. Two decade reconstruction of algal blooms in China’s Lake Taihu. Environmental Science and Technology, 43(10), 3522-3528. [doi:10.1021/es8031852]
Gao, C., Zhu, J. G., Zhu, J. Y., Gao, X., Dou, Y. J., and Hosen, Y. 2004. Nitrogen export from an agriculture watershed in the Taihu Lake area, China. Environmental Geochemistry and Health, 26(2-3), 199-207. [doi:10.1023/B:EGAH.0000039582.68882.7f]
Guo, L. 2007. Doing battle with the green monster of Taihu Lake. Science, 317(5842), 1166. [doi: 10.1126/science.317.5842.1166]
James, R. T., Havens, K., Zhu, G. W., and Qin, B. Q. 2009. Comparative analysis of nutrients, chlorophyll and transparency in two large shallow lakes (Lake Taihu, P. R. China and Lake Okeechobee, USA). Hydrobiologia, 627(1), 211-231. [doi:10.1007/s10750-009-9729-5]
Jin, X. C., and Tu, Q. Y. 1990. Standard of Lake Eutrophication Survey. 2nd ed. Beijing: Chinese Environmental Science Press. (in Chinese)
Karlsson, E. I., and Brunberga, K. 2004. The importance of shallow sediments in the recruitment of Anabaena and Aphanizomenon (cyanophyceae). Journal of Phycology, 40(5), 831-836. [doi:10.1111/j.1529-8817. 2004.04070.x]
Khan, F. A., and Ansari, A. A. 2005. Eutrophication, an ecological vision. The Botanical Review, 71(4), 449-482. [doi:10.1663/0006-8101(2005)071[0449:EAEV]2.0.CO;2]
Li, W., Yang, Q., and Liu, G. 1994. Algal bloom in Lake Taihu and its control. Sund, H., Yu, X., Stabel, H., Yuan, K., Geller, W., and She, F., eds., Environmental Protection and Lake Ecosystem, 243-261. Beijing: China Science and Technology Press.
Liu, X., Lu, X. H., and Chen, Y. W. 2011. The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China: An 11-year investigation. Harmful Algae, 10(3), 337-343. [doi:10.1016/j.hal. 2010.12.002]
Lorenzen, C. J. 1967. Determination of chlorophyll-a and phaeopigments: Spectrophotometric equations. Limnology and Oceanography, 12(1), 343-346. [doi:10.4319/lo.1967.12.2.0343]
Ma, L. Q., Gao, S. J., Wen, J. B., Zong, S. X., and Xu, Z. C. 2008. Effective accumulated temperature and developmental threshold temperature for Semanotus bifasciatus (Motschulsky) in Beijing. Forestry Studies in China, 10(2), 125-129. [doi:10.1007/s11632-008-0021-y]
Moss, B., Phillips, G., and Madgwick, J. 1996. A Guide to the Restoration of Nutrient-enriched Shallow Lakes. Norwich: The Broads Authority.
Murphy, J. R., and Riley, J. P. 1962. A modified single solution method for the determination of phosphorus in natural waters. Analytica Chimica Acta, 27(1), 31-36. [doi:10.1016/S0003-2670(00)88444-5]
Paerl, H. W., and Fulton, R. S. 2006. Ecology of harmful cyanobacteria. Granéli, E., and Turner, J. T., eds., Ecology of Harmful Marine Algae, 95-107. Berlin: Springer-Verlag.
Paerl, H. W., and Huisman, J. 2008. Blooms like it hot. Science, 320(5872), 57-58. [doi:10.1126/ science.1155398]
Paerl, H. W., Xu, H., McCarthy, J. M., Zhu, G. W., Qin, B. Q., Li, Y. P., and Gardner, S. W. 2011. Controlling harmful cyanobacterial blooms in a hypereutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Research, 45(5), 1573-1583. [doi:10.1016/j.watres.2010.09.019]
Qin, B. Q., and Zhu, G. W. 2006. The nutrient forms, cycling and exchange flux in the sediment and overlying water system in lakes from the middle and lower reaches of Yangtze River. Sciences in China, Ser. D: Earth Sciences, 49(s1), 1-13. [doi:10.1007/s11430-006-8101-0]
Qin, B. Q., Zhu, G. W., Zhang, L., Luo, L. C., and Gao, G. 2006. Estimation of internal nutrient release in large shallow Lake Taihu, China. Science in China, Ser. D: Earth Sciences, 49(s1), 38-50. [doi:10.1007/ s11430-006-8104-x]
Qin, B. Q., Xu, P. Z., Wu, Q. L., Luo, L. C., and Zhang, Y. L. 2007. Environment issues of Lake Taihu, China. Hydrobiologia, 581, 3-14. [doi:10.1007/978-1-4020-6158-5_2]
Qin, B. Q. 2008. Lake Taihu, China – Dynamics and Environmental Change. Springer.
Qin, B. Q. 2009. Lake eutrophication: Control countermeasures and recycling exploitation. Ecological Engineering, 35(11), 1569-1573. [doi:10.1016/j.ecoleng.2009.04.003]
Qin, B. Q., Zhu, G. W., Gao, G., Zhang, Y. L., Li, W., Paerl, H. W., and Carmichael, W. W. 2010. A drinking water crisis in Lake Taihu, China: Linkage to climatic variability and lake management. Environmental Management, 45(1), 105-112. [doi:10.1007/s00267-009-9393-6]
Reynolds, C. S., Irish, A. E., and Eliott, J. A. 2001. The ecological basis for simulating phytoplankton responses to environmental change. Ecology Modeling, 140(3), 271-291. [doi:10.1016/S0304-3800(01) 00330-1]
Reynolds, C. S. 2006. Ecology of Phytoplankton. Cambridge: Cambridge University Press.
Schindler, D. W. 1977. Evolution of phosphorus limitation in lakes. Science, 195(4275), 260-262.
Schindler, D. W. 2006. Recent advances in the understanding and management of eutrophication. Limnology and Oceanography, 51(1), 356-363.
Sherr, B. F., Sherr, E. B., and McDaniel, J. 1992. Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assemblages. Applied and Environmental Microbiology, 58(8), 2381-2385.
Shi, J., and Zai, S. 1994. Eutrophication of Lake Taihu and its control.Sund, H., Yu, X., Stabel, H., Yuan, K., Geller, W., and She, F., eds., Environmental Protection and Lake Ecosystem, 207-215. Beijing: China Science and Technology Press.
Stella, A. B., Sebastian, D., Herwig, S., Gabriele, T., Miriam, R., Angelika, W., Achim, W., Christoph, G. J., and Maren, S. 2007. Water temperature and mixing depth affect timing and magnitude of events during spring succession of the plankton. Oecologia, 150(4), 643-654. [doi:10.1007/s00442-006-0550-9]
Sun, S., and Huang, Y. 1993. Lake Taihu. Beijing: Chinese Marine Press. (in Chinese)
Wang, X. J., and Liu, R. M. 2005. Spatial analysis and eutrophication assessment for chlorophyll a in Taihu Lake. Environmental Monitoring and Assessment, 101(1-3), 167-174. [doi:10.1007/s10661-005-9154-9]
Wang, X. J., Lu, Y. L., He, G. Z., Han, J. Y., and Wang, T. Y. 2007. Multivariate analysis of interactions between phytoplankton biomass and environmental variables in Taihu Lake, China. Environmental Monitoring and Assessment, 133(1-3), 243-253. [doi:10.1007/s10661-006-9577-y]
Xu, H., Paerl, W. H., Qin, B. Q., Zhu, G. W., and Gao, G. 2010. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology and Oceanography, 55(1), 420-432. [doi:10.4319/lo.2010.55.1.0420]
Yang, M., Yu, J. W., Li, Z. L., Guo, Z. H., Burch, M., and Lin, T. F. 2008. Taihu Lake not to blame for Wuxi’s woes. Science, 319(5860),158. [doi:10.1126/science.319.5860.158a]
Zhang, Y. L., Qin, B. Q., and Liu, M. L. 2007. Temporal-spatial variation of chlorophyll a and primary production in Meiliang Bay, Lake Taihu, China from 1995 to 2003. Journal of Plankton Research, 29(8), 707-719. [doi:10.1093/plankt/fbm049]
Zhu, G., Wang, F., Zhang, Y., Gao, G., and Qin, B. 2008. Hypoxia and its environmental influences in large, shallow, and eutrophic Lake Taihu, China. Verhandlungen des Internationalen Verein Limnologie, 30(3), 361-365.
Zhu, G. W. 2009. Spatial-temporal distribution pattern of water quality in Lake Taihu and its relation with cyanobacterial blooms. Resources and Environment in the Yangtze Basin, 18(5), 439-445. (in Chinese)
Similar articles
1.Hao-yun WU;Yan HU.Maintaining healthy rivers and lakes through water diversion from Yangtze River to Taihu lake in Taihu Basin[J]. Water Science and Engineering, 2008,1(3): 36-43
2.Shu-fang FAN*; Min-quan FENG;Zhao LIU.Simulation of water temperature distribution in Fenhe Reservoir[J]. Water Science and Engineering, 2009,2(2): 32-42
3.Qing-fang HU;Yin-tang WANG.Impact assessment of climate change and human activities on annual highest water level of Taihu Lake[J]. Water Science and Engineering, 2009,2(1): 1-15
4. Kiyosi KAWANISI, Arata KANEKO, Shinya NIGO, Mohammad SOLTANIASL, Mahmoud F. MAGHREBI.New acoustic system for continuous measurement of river discharge and water temperature[J]. Water Science and Engineering, 2010,3(1): 47-55
5.Li-juan XUE1,2, Li-jiao LI1, 3, Qi ZHANG*1.Hydrological behaviour and water balance analysis for Xitiaoxi catchment of Taihu Basin[J]. Water Science and Engineering, 2008,1(3): 44-53
6.Zheng GONG; Chang-kuan ZHANG; Cheng-biao ZUO; Wei-deng WU.Sediment transport following water transfer from   Yangtze River to Taihu Basin[J]. Water Science and Engineering, 2011,4(4): 431-444
7.Gui-hua LU; Qian MA; Jian-hua ZHANG.Analysis of black water aggregation in Taihu Lake[J]. Water Science and Engineering, 2011,4(4): 374-385
8. Wei ZHANG, Shou-sheng MU, Yan-jing ZHANG, Kai-min CHEN.Seasonal and interannual variations of flow discharge from Pearl River into sea[J]. Water Science and Engineering, 2012,5(4): 399-409

Copyright by Water Science and Engineering