Water Science and Engineering 2013, 6(1) 1-17 DOI:   10.3882/j.issn.1674-2370.2013.01.001  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
PDF(1446KB)
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
Xinanjiang model
global sensitivity analysis
parameter identification
meta-modeling
response surface method
Authors
SONG Xiao-Meng
PubMed
Article by Song,X.M

Parameter identification and global sensitivity analysis of Xinanjiang model using meta-modeling approach

Xiao-meng SONG*1, 2, Fan-zhe KONG2, Che-sheng ZHAN3, 4, Ji-wei HAN2,  Xin-hua ZHANG4

1. Hydrology and Water Resources Department, Nanjing Hydraulic Research Institute, Nanjing 210029, P. R. China
2. School of Resource and Earth Science, China University of Mining and Technology, Xuzhou 221116, P. R. China
3. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences  and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, P. R. China
4. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, P. R. China

Abstract

Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters’ sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.

Keywords Xinanjiang model   global sensitivity analysis   parameter identification   meta-modeling   response surface method  
Received 2011-10-11 Revised 2012-02-06 Online: 2013-01-30 
DOI: 10.3882/j.issn.1674-2370.2013.01.001
Fund:

This work was supported by the National Natural Science Foundation of China (Grant No. 41271003) and the National Basic Research Program of China (Grants No. 2010CB428403 and 2010CB951103).

Corresponding Authors: Xiao-meng SONG
Email: wenqingsxm@126.com
About author:

References:

Campolongo, F., Tarantola, S., and Saltelli, A. 1999. Tackling quantitatively large dimensionality problems. Computer Physics Communications, 117(1-2), 75-85. [doi:10.1016/S0010-4655(98)00165-9]
Campolongo, F., Cariboni, J., and Saltelli, A. 2007. An effective screening design for sensitivity analysis of large models. Environmental Modelling and Software, 22(10), 1509-1518. [doi:10.1016/j.envsoft. 2006.10.004]
Cheng, C. T., Zhao, M. Y., Chau, K. W., and Wu, X. Y. 2006. Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure. Journal of Hydrology, 316(1-4), 129-140. [doi:10.1016/j.jhydrol.2005.04.022]
Doksum, K., and Samarov, A. 1995. Nonparametric estimation global functional and a measure of the explanatory power of covariates in regression. The Annals of Statistics, 23(5), 1443-1473. [doi:10.1214/ aos/1176324307]
Elsawwaf, M., Willems, P., and Feyen, J. 2010. Assessment of the sensitivity and prediction uncertainty of evaporation models applied to Nasser Lake, Egypt. Journal of Hydrology, 395(1-2), 10-22. [doi:10.1016/j.jhydrol.2010.10.002]
Frey, H. C., and Patil, S. R. 2002. Identification and review of sensitivity analysis methods. Risk Analysis, 22(3), 553-578. [doi:10.1111/0272-4332.00039]
Friedman, J. H. 1991. Multivariate adaptive regression splines. The Annals of Statistics, 19(1), 1-67. [doi:10.1214/aos/1176347963]
Haan, C. T., Allred, B., Storm, D. E., Sabbagh, G. J., and Prabhu, S. 1995. Statistical procedure for evaluating hydrologic/water quality models. Transactions of the American Society of Agricultural and Biological Engineers, 38(3), 725-733.
Kleijnen, J., and Sargent, R. G. 2000. A methodology for fitting and validating metamodels in simulation. European Journal of Operational Research, 120(1), 14-29. [doi:10.1016/S0377-2217(98)00392-0]
Kong, F. Z., Song, X. M., Zhan, C. S., and Ye, A. Z. 2011. An efficient quantitative sensitivity analysis approach for hydrological model parameters using RSMSobol method. Acta Geographica Sinica, 66(9), 1270-1280. (in Chinese)
Li, H. X., Zhang, Y. Q., Chiew, F. H. S., and Xu, S. G. 2009. Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index. Journal of Hydrology, 370(1-4), 155-162. [doi:10. 1016/j.jhydrol.2009.03.003]
Madsen, H. 2000. Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. Journal of Hydrology, 235(3-4), 276-288. [doi:10.1016/s0022-1694(00)00279-1]
Makler-Pick, V., Gal, C., Gorfine, M., Hipsey, M. R., and Carmel, Y. 2011. Sensitivity analysis for complex ecological models: A new approach. Environmental Modelling and Software, 26(2), 124-134. [doi:10.1016/j.envsoft.2010.06.010]
Marrel, A., Looss, B., Laurent, B., and Roustant, O. 2009. Calculations of Sobol indices for the Gaussian process metamodel. Reliability Engineering and System Safety, 94(3), 742-751. [doi: 10.1016/j.ress.2008.07.008]
McKay, M. D. 1993. Evaluating Prediction Uncertainty. Los Alams: Los Alams National Laboratory.
Meyers, R. H., and Montgomery, D. C. 2002. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. 2nd Ed. New York: John Wiley & Sons.
Mohammed, F. A., Chen, Q. B., and Hamed, N. 2010. Uncertainty Analysis of Xinanjiang Model using the Monte Carlo Analysis Toolbox. http://www.paper.edu.cn/index.php/default/en_releasepaper/content/ 40971 [Retrieved Sep. 05, 2011 ]
Morris, M. D. 1991. Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2), 161-174.
Muñoz-Carpena, R., Zajac, Z., and Kuo, Y. M. 2007. Global sensitivity and uncertainty analysis of the water quality model VFSMOD-W. Transactions of the American Society of Agricultural and Biological Engineers, 50(5), 1719-1732.
Quirós, E., Felicísimo, Á. M., and Cuartero, A. 2009. Testing multivariate adaptive regression splines (MARS) as a method of land cover classification of TERRA-ASTER satellite images. Sensors, 9(11), 9011-9028. [doi:10.3390/s91109011]
Ratto, M., Pagano, A., and Young, P. 2007. State dependent parameter metamodelling and sensitivity analysis. Computer Physics Communications, 177(11), 863-876. [doi:10.1016/j.cpc.2007.07.011]
Ren, Q. W., Chen, Y. B., and Shu, X. J. 2010. Global sensitivity analysis of Xinanjiang model parameter based on Extend FAST method. Acta Scientiarum Naturalium Universitatis Sunyatseni, 49(3), 127-134. (in Chinese)
Saltelli, A., Chan, K., and Scott, E. M. 2000. Sensitivity Analysis: Gauging the Worth of Scientific Models. West Sussex: John Wiley & Sons.
Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. 2004. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. West Sussex: John Wiley & Sons.
Sathyanarayanamurthy, H., and Chinnam, R. B. 2009. Metamodels for variable importance decomposition with applications to probabilistic engineering design. Computers and Industrial Engineering, 57(3), 996-1007. [doi:10.1016/j.cie.2009.04.003]
Shi, P., Chen, C., Srinivasan, R., Zhang, X. S., Cai, T., Fang, X. Q., Qu, S. M., Chen, X., and Li, Q. F. 2011. Evaluating the SWAT model for hydrological modeling in the Xixian watershed and a comparison with the XAJ model. Water Resources Management, 25(10), 2595-2612. [doi:10.1007/s11269-011-9828-8]
Sobol’, I. M. 1976. Uniformly distributed sequences with additional uniformly properties. USSR Computational Mathematics and Mathematical Physics, 16(5), 236-242. [doi:10.1016/0041-5553 (76)90154-3]
Sobol’, I. M. 1998. On quasi-Monte Carlo integrations. Mathematics and Computers in Simulation, 47(2-5), 103-122. [doi:10.1016/S0378-4754(98)00096-2]
Song, X. M., Kong, F. Z., and Zhu, Z. X. 2011a. Application of Muskingum routing method with variable parameters in ungauged basin. Water Science and Engineering, 4(1), 1-12. [doi:10.3882/j.issn. 1674-2370.2011.01.001]
Song, X. M., Zhan, C. S., Kong, F. Z., and Xia, J. 2011b. A review on uncertainty analysis of large-scale hydrological cycle modeling system. Acta Geographica Sinica, 66(3), 396-406. (in Chinese)
Song, X. M., Zhan, C. S., Kong, F. Z., and Xia, J. 2011c. Advances in uncertainty quantification of large-scale hydrological system modeling. Journal of Geographical Sciences, 21(5), 801-819. [doi:10.1007/ s11442-011-0811-2]
Song, X. M., Kong, F. Z., Zhan, C. S., and Han, J. W. 2012a. Hybrid optimization rainfall-runoff simulation based on Xinanjiang model and artificial neural network. Journal of Hydrologic Engineering, 17(9), 1033-1041. [doi:10.1061/(ASCE)HE.1943-5584.0000548]
Song, X. M., Kong, F. Z., Zhan, C. S., and Han, J. W. 2012b. Sensitivity analysis of hydrological model parameters using a statistical theory approach. Advances in Water Science, 23(5), 642-649. (in Chinese)
Song, X. M., Zhan, C. S., and Xia, J. 2012c. Integration of a statistical emulator approach with the SCE-UA method in parameter optimization of a hydrological model. Chinese Science Bulletin, 57(26), 3397-3403. [doi:10.1007/s11434-012-5305-x]
Song, X. M., Zhan, C. S., Xia, J., and Kong, F. Z. 2012d. An efficient global sensitivity analysis approach for distributed hydrological model. Journal of Geographical Sciences, 22(2), 209-222, [doi:10.1007/s11442- 012-0922-5]
Storlie, C. B., Swiler, L. P., Helton, J. C., and Sallaberry, C. J. 2009. Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models. Reliability Engineering and System Safety, 94(11), 1735-1763. [doi:10.1016/j.ress.2009.05.007]
Tang, Y., Reed, P., Wagener, T., and van Werkhoven, K. 2007a. Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation. Hydrology and Earth System Sciences, 11(2), 793-817. [doi:10.5194/hess-11-793-2007]
Tang, Y., Reed, P., van Werkhoven, K., and Wagener, T. 2007b. Advancing the identification and evaluation of distributed rainfall-runoff models using global sensitivity analysis. Water Resources Research, 45, W06415. [doi:10.1029/2006WR005813]
van Griensven, A., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M., and Srinivasan, R. 2006. A global sensitivity analysis tool for the parameters of multi-variable catchment model. Journal of Hydrology, 324(1-4), 10-23. [doi:10.1016/j.jhydrol.2005.09.008]
Warmink, J. J., Janssen, J. A. E. B., Booij, M. J., and Krol, M. S. 2010. Identification and classification of uncertainties in the application of environmental models. Environmental Modelling and Software, 25(12), 1518-1527. [doi:10.1016/j.envsoft.2010.04.011]
Xu, C., and Gertner, G. 2007. Extending a global sensitivity analysis technique to models with correlated parameters. Computational Statistics and Data Analysis, 51(12), 5579-5590. [doi:10.1016/j.csda. 2007.04.003]
Xu, C., and Gertner, G. 2011. Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST). Computational Statistics and Data Analysis, 55(1), 184-198. [doi:10. 1016/j.csda.2010.06.028]
Yang, J. 2011. Convergence and uncertainty analysis in Monte-Carlo based sensitivity analysis. Environmental Modelling and Software, 26(4), 444-457. [doi:10.1016/j.envsoft.2010.10.007]
Zhan, C. S., Song, X. M., Xia, J., and Tong, C. 2013. An efficient integrated approach for global sensitivity analysis of hydrological model parameters. Environmental Modelling and Software, 41, 39-52. [doi: 10.1016/j.envsoft.2012.10.009]
Zhao, R. J., and Wang, P. L. 1988. Parameter analysis for Xinanjiang model. Journal of China Hydrology, (6), 2-9. (in Chinese)
Zhao, R. J. 1992. The Xinanjiang model applied in China. Journal of Hydrology, 135(1-4), 371-381. [doi: 10.1016/0022-1694(92)90096-E]
Zhao, R. J., and Liu, X. R. 1995. The Xinanjiang model. Singh, V. P., ed., Computer Models of Watershed Hydrology, 215-232. Colorado: Water Resources Publications.

 

Similar articles
1.Tong-chun LI ;Dan-dan LI;Zhi-qiang WANG.Tensile reliability analysis for gravity dam foundation surface based on FEM and response surface method[J]. Water Science and Engineering, 2010,3(2): 233-240
2.Yan-wei SUN; Xiao-mei WEI; Christine A. POMEROY.Global analysis of sensitivity of bioretention cell design elements to hydrologic performance[J]. Water Science and Engineering, 2011,4(3): 246-257

Copyright by Water Science and Engineering