Water Science and Engineering 2013, 6(1) 59-77 DOI:   10.3882/j.issn.1674-2370.2013.01.005  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
experimental investigation
open channel turbulent flow
horseshoe vortex
circular pier
forward difference technique
Stokes theorem
ASIS -Mazumdar
Article by Subhasish,.D
Article by Rajib,.D
Article by Asis,.M

Circulation characteristics of horseshoe vortex in scour region around circular piers

Subhasish DAS*, Rajib DAS, Asis MAZUMDAR

School of Water Resources Engineering, Jadavpur University, Kolkata 700032, India


 This paper presents an experimental investigation of the circulation of the horseshoe vortex system within the equilibrium scour hole at a circular pier, with the data measured by an acoustic Doppler velocimeter (ADV). Velocity vector plots and vorticity contours of the flow field on the upstream plane of symmetry (y = 0 cm) and on the planes ±3 cm away from the plane of symmetry (y = ±3 cm) are presented. The vorticity and circulation of the horseshoe vortices were determined using the forward difference technique and Stokes theorem, respectively. The results show that the magnitudes of circulations are similar on the planes y = 3 cm and y = –3 cm, which are less than those on the plane y = 0 cm. The circulation decreases with the increase of flow shallowness, and increases with the densimetric Froude number. It also increases with the pier Reynolds number at a constant densimetric Froude number, or at a constant flow shallowness. The relative vortex strength (dimensionless circulation) decreases with the increase of the pier Reynolds number. Some empirical equations are proposed based on the results. The predicted circulation values with these equations match the measured data, which indicates that these equations can be used to estimate the circulation in future studies.

Keywords experimental investigation   open channel turbulent flow   scour   horseshoe vortex   circulation   circular pier   forward difference technique   Stokes theorem  
Received 2012-05-30 Revised 2012-11-07 Online: 2013-01-30 
DOI: 10.3882/j.issn.1674-2370.2013.01.005
Corresponding Authors: Subhasish DAS
Email: subhasishju@gmail.com
About author:


Abed, L., and Gasser, M. M. 1993. Model study of local scour downstream bridge piers. Shen, H. W., Su, S. T., and Wen, F. eds., Proceedings of the 1993 National Conference on Hydraulic Engineering, 1738-1743. San Francisco: American Society of Civil Engineers.
Ahmed, F., and Rajaratnam, N. 1998. Flow around bridge piers. Journal of Hydraulic Engineering, 124(3), 288-300. [doi:10.1061/(ASCE)0733-9429(1998)124:3(288)]
Baker, C. J. 1979. The laminar horseshoe vortex. Journal of Fluid Mechanics, 95(2), 347-367. [doi: 10.1017/S0022112079001506]
Barbhuiya, A. K., and Dey, S. 2004. Local scour at abutments: A review. Sadhana, Academy Proceedings in Engineering Sciences, 29(5), 449-476. [doi:10.1007/BF02703255]
Breusers, H. N. C., Nicollet, G., and Shen, H. W. 1977. Local scour around cylindrical piers. Journal of Hydraulic Research, 15(3), 211-252. [doi:10.1080/00221687709499645]
Breusers, H. N. C., and Raudkivi, A. J. 1991. Scouring: Hydraulic Structures Design Manual, Vol. 2. Rotterdam: Taylor and Francis.
Devenport, W. J., and Simpson, R. L. 1990. Time-dependent and time-averaged turbulence structure near the nose of a wing-body junction. Journal of Fluid Mechanics, 210, 23-55. [doi:10.1017/ S0022112090001215].
Dey, S., Bose, S. K., and Sastry, G. L. N. 1995. Clear water scour at circular piers: A model. Journal of Hydraulic Engineering, 121(12), 869-876. [doi:10.1061/(ASCE)0733-9429(1995)121:12(869)]
Dey, S. 2003a. Incipient motion of bivalve shells on sand beds under flowing water. Journal of Engineering Mechanics, 129(2), 232-240. [doi:10.1061/(ASCE)0733-9399(2003)129:2(232)]
Dey, S. 2003b. Threshold of sediment motion on combined transverse and longitudinal sloping beds. Journal of Hydraulic Research, 41(4), 405-415. [doi:10.1080/00221680309499985]
Dey, S., and Barbhuiya, A. K. 2005. Turbulent flow field in a scour hole at a semicircular abutment. Canadian Journal of Civil Engineering, 32(1), 213-232. [doi:10.1139/l04-082]
Dey, S., and Raikar, R. V. 2007. Characteristics of horseshoe vortex in developing scour holes at piers. Journal of Hydraulic Engineering, 133(4), 399-413. [doi:10.1061/(ASCE)0733-9429(2007)133:4(399)]
Eckerle, W. A., and Awad, J. K. 1991. Effect of freestream velocity on the three-dimensional separated flow region in front of a cylinder. Journal of Fluids Engineering, 113(1), 37-44. [doi:10.1115/1.2926493]
Froehlich, D. C. 1989. Local scour at bridge abutments. Ports, M. A. ed., Proceedings of the 1989 National Conference on Hydraulic Engineering, 13-18. New York: ASCE.
Graf, W. H., and Istiarto, I. 2002. Flow pattern in the scour hole around a cylinder. Journal of Hydraulic Research, 40(1), 13-20. [doi:10.1080/00221680309499989]
Istiarto, I., and Graf, W. H. 2001. Experiments on flow around a cylinder in a scoured channel bed. International Journal of Sediment Research, 16(4), 431-444.
Jain, S. C., and Fischer, E. E. 1979. Scour Around Circular Bridge Piers at High Froude Numbers. Washington, D.C.: Federal Highway Administration.
Khwairakpam, P., Ray, S. S., Das, S., Das, R., and Mazumdar, A. 2012. Scour hole characteristics around a vertical pier under clearwater scour conditions. ARPN Journal of Engineering and Applied Sciences, 7(6), 649-654.
Kirkil, G., Constantinescu, S. G., and Ettema, R. 2008. Coherent structures in the flow field around a circular cylinder with scour hole. Journal of Hydraulic Engineering, 134(5), 572-587. [doi:10.1061/(ASCE) 0733-9429(2008)134:5(572)]
Laursen, E. M., and Toch, A. 1956. Scour Around Bridge Piers and Abutments, Vol. 4. Ames: Iowa Highway Research Board.
Liu, H. K., Chang, F. M., and Skinner, M. M. 1961. Effect of Bridge Construction on Scour and Backwater. Fort Collins: Colorado State University.
Melville, B. W. 1975. Local Scour at Bridge Site. Ph. D. Dissertation. Auckland: University of Auckland.
Melville, B. W., and Raudkivi, A. J. 1977. Flow characteristics in local scour at bridge piers. Journal of Hydraulic Research, 15(4), 373-380. [doi:10.1080/00221687709499641]
Melville, B. W. 1992. Local scour at bridge abutments. Journal of Hydraulic Engineering, 118(4), 615-631. [doi:10.1061/(ASCE)0733-9429(1992)118:4(615)]
Melville, B. W., and Coleman, S. E. 2000. Bridge Scour. Highlands Ranch: Water Resources Publications, LLC.
Muzzammil, M., and Gangadhariah, T. 2003. The mean characteristics of horseshoe vortex at a cylindrical pier. Journal of Hydraulic Research, 41(3), 285-297. [doi:10.1080/00221680309499973]
Oliveto, G., and Hager, W. H. 2002. Temporal evolution of clear-water pier and abutment scour. Journal of Hydraulic Engineering, 128(9), 811-820. [doi:10.1061/(ASCE)0733-9429(2002)128:9(811)]
Pagliara, S. 2007. Influence of sediment gradation on scour downstream of block ramps. Journal of Hydraulic Engineering, 133(11), 1241-1248. [doi:10.1061/(ASCE)0733-9429(2007)133:11(1241)]
Pagliara, S., Das, R., and Palermo, M. 2008. Energy dissipation on submerged block ramps. Journal of Irrigation and Drainage Engineering, 134(4), 527-532. [doi:10.1061/(ASCE)0733-9437(2008) 134:4(527)]
Qadar, A. 1981. The vortex scour mechanism at bridge piers. Proceedings of the Institution of Civil Engineers, 71(3), 739-757. [doi:10.1680/iicep.1981.1816]
Raikar, R. V., and Dey, S. 2008. Kinematics of horseshoe vortex development in an evolving scour hole at a square cylinder. Journal of Hydraulic Research, 46(2), 247-264. [doi:10.1080/00221686.2008.9521859]
Raudkivi, A. J., and Ettema, R. 1983. Clear-water scour at cylindrical piers. Journal of Hydraulic Engineering, 109(3), 338-350. [doi:10.1061/(ASCE)0733-9429(1983)109:3(338)]
Richardson, J. R., and Richardson, E. V. 1994. Practical method for scour prediction at bridge piers. Proceedings of the 1994 ASCE National Conference on Hydraulic Engineering, 1-5. New York: ASCE.
Shen, H. W., Schneider, V. R., and Karaki, S. 1969. Local scour around bridge piers. Journal of the Hydraulics Division, 95(6), 1919-1940.
Shields, A. 1936. Application of Similarity Principles and Turbulence Research to Bed-load Movement. Pasadena: Soil Conservation Service, California Institute of Technology.
Srivastava, R. 1982. Effect of Free Stream Turbulence on the Characteristics of a Turbulent Boundary Layer on a Flat Plate. M. E. Dissertation. India: University of Roorkee.
Unger, J., and Hager, W. H. 2005. Discussion of the mean characteristics of horseshoe vortex at a cylindrical pier. Journal of Hydraulic Research, 43(5), 585-588. [doi:10.1080/00221680509500157]
van Rijn, L. C. 1984. Sediment transport, part I: Bed load transport. Journal of Hydraulic Engineering, 110(10), 1431-1456. [doi:10.1061/(ASCE)0733-9429(1984)110:10(1431)]
Wahl, T. L. 2003. Discussion of “despiking acoustic Doppler velocimeter data”. Journal of Hydraulic Engineering, 129(6), 484-487. [doi:10.1061/(ASCE)0733-9429(2003)129:6(484)]

Similar articles
1.Jun CHEN, Hong-wu TANG.Multi-approach analysis of maximum riverbed scour depth above a subway tunnel[J]. Water Science and Engineering, 2010,3(4): 431-442

Copyright by Water Science and Engineering