Water Science and Engineering 2014, 7(3) 306-318 DOI:   doi:10.3882/j.issn.1674-2370.2014.03.006  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
PDF(1513KB)
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
wave-induced setup
wave-induced setdown
Boussinesq model
wave breaking
reef
Authors
KE-ZHAO -FANG
JIWEI -yin
ZHILI -zou
JIAWEN -sun
PubMed
Article by Ke-Zhao,.F
Article by Jiwei,.Y
Article by Zhili,.Z
Article by Jiawen,.S

Revisiting study on Boussinesq modeling of wave transformation over various reef profiles

Ke-zhao FANG*1, 2, Ji-wei YIN3, Zhong-bo LIU1, Jia-wen SUN2, Zhi-li ZOU1

1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, P. R. China
2. National Marine Environment Monitoring Center, State Oceanic Administration, Dalian 116023, P. R. China
3. Heilongjiang Province Navigation Investigation and Design Institute, Harbin 150001, P. R. China

Abstract

    To better understand the complex process of wave transformation and associated hydrodynamics over various fringing reef profiles, numerical experiments were conducted with a one-dimensional (1D) Boussinesq wave model. The model is based on higher-order Boussinesq equations and a higher-accuracy finite difference method. The dominant energy dissipation in the surf zone, wave breaking, and bottom friction were considered by use of the eddy viscosity concept and quadratic bottom friction law, respectively. Numerical simulation was conducted for a wide range of wave conditions and reef profiles. Good overall agreement between the computed results and the measurements shows that this model is capable of describing wave processes in the fringing reef environment. Numerical experiments were also conducted to track the source of underestimation of setup for highly nonlinear waves. Linear properties (including dispersion and shoaling) are found to contribute little to the underestimation; the low accuracy in nonlinearity and the ad hoc method for treating wave breaking may be the reason for the problem.

Keywords wave-induced setup   wave-induced setdown   Boussinesq model   wave breaking   reef  
Received 2013-01-04 Revised 2013-07-16 Online: 2014-07-25 
DOI: doi:10.3882/j.issn.1674-2370.2014.03.006
Fund:
This work was supported by the National Natural Science Foundation of China (Grants No. 51009018 and 51079024) and the National Marine Environment Monitoring Center, State Oceanic Administration, P. R. China (Grant No. 210206).
Corresponding Authors: Ke-zhao FANG
Email: kfang@dlut.edu.cn
About author:

References:
Achituv, Y., and Dubinsky, Z. 1990. Evolution and zoogeography of coral reefs. Dubinsky, Z. ed., Ecosystems of the World, 25: Coral Reefs, 1-9. Amsterdam: Elsevier Science Publishing Company, Inc.
Demirbilek, Z., and Nwogu, O. G. 2007. Boussinesq Modeling of Wave Propagation and Runup over Fringing Coral Reefs: Model Evaluation Report. Washington: Coastal and Hydraulics Laboratory, Engineering Research and Development Center, US Army Corps of Engineers.
Fang, K. Z., Zou, Z. L., and Dong, P. 2011. Boussinesq modeling of undertow profiles. Proceedings of the 21st International Offshore and Polar Engineering Conference, 347-353. Maui: International Society of Offshore and Polar Engineers.
Gobbi, M. F., and Kirby, J. T. 1999. Wave evolution over submerged sills: Tests of a high-order Boussinesq model. Coastal Engineering, 37(1), 57-96. [doi:10.1016/S0378-3839(99)00015-0]
Hu, Y., Niu, X. J., and Yu, X. P. 2012. Large eddy simulation wave breaking over muddy seabed. Journal of Hydrodynamics, Ser. B, 24(2), 298-304. [doi:10.1016/S1001-6058(11)60248-5]
Huang, Z. L., and Lin, P. Z. 2012. Numerical simulation of propagation and breaking processes of a focused waves group. Journal of Hydrodynamics, Ser. B, 24(3), 399-409. [doi:10.1016/S1001-6058(11)60261-8]
Kennedy, A. B., Chen, Q., Kirby, J. T., and Dalrymple, R. A. 2000. Boussinesq modeling of wave transformation, breaking, and runup, I: 1D. Journal of Waterway, Port, Coastal, and Ocean Engineering,  126 (1), 39-47. [doi:10.1061/(ASCE)0733-950X(2000)126:1(39)]
Kim, D. H., Lynett, P. J., and Socolofsky, S. A. 2009. A depth-integrated model for weakly dispersive, turbulent, and rotational fluid flows. Ocean Modeling, 27(3-4), 198-214. [doi:10.1016/jocemod. 2009.01.005]
Kirby, J. T. 2002. Boussinesq models and applications to nearshore wave propagation, surfzone processes and wave-induced currents. Lakhan, C. ed., Advances in Coastal Engineering, 1-41. New York: Elsevier Science.
Lara, J. L., Losada, I. J., and Guanche, R. 2008. Wave interaction with low-mound breakwaters using a RANS model. Ocean Engineering, 35(13), 1388-1400. [doi:10.1016/j.oceaneng.2008.05.006]
Madsen, P. A., and Fuhrman, D. R. 2010. High-order Boussinesq-type modeling of nonlinear wave phenomena in deep and shallow water. Advances in Numerical Simulation of Nonlinear Water Waves, 245-285. Singapore: World Scientific Publishing Co. Pte. Ltd. [doi:10.1142/9789812836502_0007]
Madsen, P. A., and Sørensen, O. R. 1992. A new form of the Boussinesq equations with improved linear dispersion characteristics, Part 2: A slowly-varying bathymetry. Coastal Engineering, 18(3-4), 183-204. [doi:10.1016/0378-3839(92)90019-Q]
Madsen, P. A., and Schäffer, H. A. 1998. Higher-order Boussinesq-type equations for surface gravity waves: Derivation and analysis. Philosophical Transactions of the Royal Society of London, Series A, 356(1749), 3123-3184. [doi:10.1098/rsta.1998.0309]
Massel, S. R., and Gourlay, M. R. 2000. On the modeling of wave breaking and set-up on coral reefs. Coastal Engineering, 39(1), 1-27. [doi:10.1016/S0378-3839(99)00052-6]
Monismith, S. G., Davis, K. A., Shellenbarger, G. G., Hench, J. L., Nidzieko, N. J., Santoro, A. E., Reidenbach, M. A., Rosman, J. H., Holtzman, R., Martens, C. S., et al. 2010. Flow effects on benthic grazing on phytoplankton by a Caribbean reef. Limnology and Oceanography, 55(5), 1881-1892. [doi:10.4319/ lo.2010.55.5.1881]
Nwogu, O. 1993. Alternative form of the Boussinesq equations for nearshore wave propagation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 119(6), 618-638. [doi:10.1061/(ASCE)0733- 950X(1993)119:6(618)]
Nwogu, O., and Demirbilek, Z. 2010. Infragravity wave motions and runup over shallow fringing reefs. Journal of Waterway, Port, Coastal, and Ocean Engineering, 136(6), 295-305. [doi:10.1061/(ASCE) WW.1943-5460.0000050]
Roeber, V., Cheung, K. F., and Kobayashi, M. H. 2010. Shock-capturing Boussinesq-type model for nearshore wave processes. Coastal Engineering, 57(4), 407-423. [doi:10.1016/j.coastaleng.2009.11.007]
Schäffer, H. A., Madsen, P. A., and Deigaard, R. 1993. A Boussinesq model for waves breaking in shallow water. Coastal Engineering, 20(3-4), 185-202. [doi:10.1016/0378-3839(93)90001-O]
Shermert, A., Kaihatu, J. M., Su, S. F., Smith, E. R., and Smith, J. M. 2011. Modeling of nonlinear wave propagation over fringing reefs. Coastal Engineering, 58(12), 1125-1137. [doi:10.1016/j.coastaleng. 2011.06.007]
Skotner, C., and Apelt, C. J. 1999. Application of a Boussinesq model for the computation of breaking waves, Part 2: Wave-induced setdown and setup on a submerged coral reef. Ocean Engineering, 26(10), 927-947. [doi:10.1016/S0029-8018(98)00062-6]
Yao, Y., Huang, Z. H., Monismith, S. G., and Lo, E. Y. M 2012. 1DH Boussinesq modeling of wave transformation over fringing reefs. Ocean Engineering, 47, 30-42. [doi:10.1016/j.oceaneng.2012.03.010]
Zou, Z. L., and Fang, K. Z. 2008. Alternative forms of the higher-order Boussinesq equations: Derivations and Validations. Coastal Engineering, 55(6), 506-521. [doi:10.1016/j.coastaleng.2008.02.001]
Similar articles

Copyright by Water Science and Engineering