Water Science and Engineering 2014, 7(3) 237-249 DOI:   doi:10.3882/j.issn.1674-2370.2014.03.001  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
CMA precipitation data
VIC hydrological model
streamflow simulation
upper of Yellow and Yangtze River basins
KAI -Tong
Article by Zhenchun,.H
Article by Kai,.T
Article by Xiaoli,.L
Article by Leilei,.Z

Capability of TMPA products to simulate streamflow in upper Yellow and Yangtze River basins on Tibetan Plateau

Zhen-chun HAO1, Kai TONG*1, 2, Xiao-li LIU1, Lei-lei ZHANG1, 2

1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, P. R. China
2. Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P. R. China


    Due to the high elevation, complex terrain, severe weather, and inaccessibility, direct meteorological observations do not exist over large portions of the Tibetan Plateau, especially the western part of it. Satellite rainfall estimates have been very important sources for precipitation information, particularly in rain gauge-sparse regions. In this study, Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) products 3B42, RTV5V6, and RTV7 were evaluated for their applicability to the upper Yellow and Yangtze River basins on the Tibetan Plateau. Moreover, the capability of the TMPA products to simulate streamflow was also investigated using the Variable Infiltration Capacity (VIC) semi-distributed hydrological model. Results show that 3B42 performs better than RTV5V6 and RTV7, based on verification of the China Meteorological Administration (CMA) observational precipitation data. RTV5V6 can roughly capture the spatial precipitation pattern but overestimation exists throughout the entire study region. The anticipated improvements of RTV7 relative to RTV5V6 have not been realized in this study. Our results suggest that RTV7 significantly overestimates the precipitation over the two river basins, though it can capture the seasonal cycle features of precipitation. 3B42 shows the best performance in streamflow simulation of the abovementioned satellite products. Although involved in gauge adjustment at a monthly scale, 3B42 is capable of daily streamflow simulation. RTV5V6 and RTV7 have no capability to simulate streamflow in the upper Yellow and Yangtze River basins.

Keywords TMPA   CMA precipitation data   VIC hydrological model   streamflow simulation   upper of Yellow and Yangtze River basins  
Received 2013-07-12 Revised 2014-06-10 Online: 2014-07-25 
DOI: doi:10.3882/j.issn.1674-2370.2014.03.001
This work was supported by the National Basic Research Program of China (the 973 Program, Grant No. 2010CB951101), the Special Fund of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering of Hohai University (Grant No. 1069-50985512), and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant No. XDA05110102).
Corresponding Authors: Kai TONG
Email: ktong@hhu.edu.cn
About author:


Adler, R. F., Kidd, C., Petty, G., Morissey, M., and Goodman, H. M. 2001. Intercomparison of global precipitation products: The third Precipitation Intercomparison Project (PIP-3). Bulletin of the American Meteorological Society, 82(7), 1377-1396. [doi:10.1175/1520-0477(2001)082<1377:IOGPPT>2.3.CO;2]
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., et al. 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). Journal of Hydrometeorology, 4(6), 1147-1167. [doi:10.1175/1525- 7541(2003)004<1147:TVGPCP>2.0.CO;2]
Bai, A. J., Liu, C. H., and Liu, X. D. 2008. Diurnal variation of summer rainfall over the Tibetan Plateau and its neighboring regions revealed by TRMM multi-satellite precipitation analysis. Chinese Journal of Geophysics, 51(3), 518-529.
Barros, A. P., Joshi, M., Putkonen, J., and Burbank, D. W. 2000. A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophysical Research Letters, 27(22), 3683-3686. [doi:10.1029/2000GL011827]
Bitew, M. M., and Gebremichael, M. 2011a. Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands. Hydrology and Earth System Sciences, 15(4), 1147-1155. [doi:10.5194/hess-15-1147-2011]
Bitew, M. M., and Gebremichael, M. 2011b. Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model. Water Resources Research, 47(6), W06526. [doi:10.1029/2010WR009917]
Bowman, K. P., Phillips, A. B., and North, G. R. 2003. Comparison of TRMM rainfall retrievals with rain gauge data from the TAO/TRITON buoy array. Geophysical Research Letters, 30(14), 1757. [doi:10. 1029/2003GL017552]
Brown, J. E. M. 2006. An analysis of the performance of hybrid infrared and microwave satellite precipitation algorithms over India and adjacent regions. Remote Sensing of Environment, 101, 63-81. [doi:10.1016/ j.rse.2005.12.005]
Chen, F. W., and Liu, C. W. 2012. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy and Water Environment, 10(3), 209-222. [doi:10.1007/ s10333-012-0319-1]
Chokngamwong, R., and Chiu, L. S. 2008. Thailand daily rainfall and comparison with TRMM products. Journal of Hydrometeorology, 9(2), 256-266. [doi:10.1175/2007JHM876.1]
Dinku, T., Ceccato, P., Grover-Kopec, E., Lemma, M., Connor, S. J., and Ropelewski, C. F. 2007. Validation of satellite rainfall products over East Africa’s complex topography. International Journal of Remote Sensing, 28(7), 1503-1526. [doi:10.1080/01431160600954688]
Dinku, T., Chidzambwa, S., Ceccato, P., Connor, S. J., and Ropelewski, C. F. 2008. Validation of high-resolution satellite rainfall products over complex terrain. International Journal of Remote Sensing, 29(14), 4097-4110. [doi:10.1080/01431160701772526]
Duan, A. M., and Wu, G. X. 2005. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dynamics, 24(7-8), 793-807. [doi:10.1007/s00382-004-0488-8]
Ebert, E. E., Janowiak, J. E., and Kidd, C. 2007. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bulletin of the American Meteorological Society, 88(1), 47-64. [doi:10.1175/BAMS-88-1-47]
Gao, Y. C., and Liu, M. F. 2013. Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrology and Earth System Sciences, 17, 837-849. [doi:10.5194/ hess-17-837-2013]
Garcia, M., Peters-Lidard, C. D., and Goodrich, D. C. 2008. Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States. Water Resources Research, 44(5), W05S13. [doi:10.1029/2006WR005788]
Gebremichael, M., Krajewski, W. F., Morrissey, M. L., Huffman, G. J., and Adler, R. F. 2005. A detailed evaluation of GPCP 1 daily rainfall estimates over the Mississippi River basin. Journal of Applied Meteorology, 44(5), 665-681. [doi:10.1175/JAM2233.1]
Hirpa, F. A., Gebremichael, M., and Hopson, T. 2010. Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. Journal of Applied Meteorology and Climatology, 49(5), 1044-1051. [doi:10.1175/2009JAMC2298.1]
Hong, Y., Gochis, D., Cheng, J. T., Hsu, K. L., and Sorooshian, S. 2007. Evaluation of PERSIANN-CCS rainfall measurement using the NAME event rain gauge network. Journal of Hydrometeorology, 8(3), 469-482. [doi:10.1175/JHM574.1]
Huffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin, D. T., Curtis, S., Joyce, R., McGavock, B., and Susskind, J. 2001. Global precipitation at one-degree daily resolution from multisatellite observations. Journal of Hydrometeorology, 2(1), 36-50. [doi:10.1175/1525-7541(2001)002<0036:GPAODD> 2.0.CO;2]
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F. 2007. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38-55. [doi:10.1175/JHM560.1]
Huffman, G. J., and Bolvin, D. T. 2012. Real-Time TRMM Multi-Satellite Precipitation Analysis Data Set Notice. ftp://trmmopen.gsfc.nasa.gov/pub/merged/ [Retrieved June 25, 2012].
Immerzeel, W. W., Van Beek, L. P. H., and Bierkens, M. F. P. 2010. Climate change will affect the Asian water towers. Science, 328, 1382-1385. [doi:10.1126/science.1183188]
Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P. P. 2004. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5(3), 487-503. [doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0. CO;2]
Kidd, C., and Levizzani, V. 2011. Status of satellite precipitation retrievals. Hydrology Earth System Sciences, 15, 1109-1116. [doi:10.5194/hess-15-1109-2011]
Kurtzman, D., Navon, S., and Morin, E. 2009. Improving interpolation of daily precipitation for hydrologic modelling: Spatial patterns of preferred interpolators. Hydrological Processes, 23(23), 3281-3291. [doi:10.1002/hyp.7442]
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J. 1994. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research, 99(D7), 14415-14428. [doi:10.1029/94JD00483]
Liang, X., Lettenmaier, D. P., and Wood, E. F. 1996. One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. Journal of Geophysical Research, 101(D16), 21403-21422. [doi:10.1029/96JD01448]
Liu, X. D., and Chen, B. D. 2000. Climatic warming in the Tibetan plateau during recent decades. International Journal of Climatology, 20(14), 1729-1742. [doi:10.1002/1097-0088(20001130)20:14< 1729::AID-JOC556>3.0.CO;2-Y]
Ly, S., Charles, C., and Degre, A. 2011. Geostatistical interpolation of daily rainfall at catchment scale: The use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrology and Earth System Sciences, 15, 2259-2274. [doi:10.5194/hess-15-2259-2011]
Nalder, I. A., and Wein, R. W. 1998. Spatial interpolation of climatic Normals: test of a new method in the Canadian boreal forest. Agricultural and Forest Meteorology, 92(4), 211-225. [doi:10.1016/S0168- 1923(98)00102-6]
Nash, J., and Sutcliffe, J. 1970. River flow forecasting through conceptual models, part I: A discussion of principles. Journal of Hydrology, 10(3), 282-290.
Nijssen, B., and Lettenmaier, D. P. 2004. Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the Global Precipitation Measurement satellites. Journal of Geophysical Research, 109(D2), D02103. [doi:10.1029/2003JD003497]
Pan, M., Li, H., and Wood, E. 2010. Assessing the skill of satellite-based precipitation estimates in hydrologic applications. Water Resources Research, 46(9), W09535. [doi:10.1029/2009WR008290]
Sorooshian, S., Hsu, K. L., Gao, X. G., Gupta, H. V., Imam, B., and Braithwaite, D. 2000. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bulletin of the American Meteorological Society, 81(9), 2035-2046. [doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2]
Tian, Y. D., Peters-Lidard, C. D., Eylander, J. B., Joyce, R. J., Huffman, G. J., Adler, R. F., Hsu, K., Turk, F. J., Garcia, M., and Zeng, J. 2009. Component analysis of errors in satellite-based precipitation estimates. Journal of Geophysical Research, 114(D24), D24101. [doi:10.1029/2009JD011949]
Turk, F. J., and Miller, S. D. 2005. Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques. IEEE Transactions on Geoscience and Remote Sensing, 43(5), 1059-1069. [doi:10.1109/TGRS.2004.841627]
Ueno, K., Fujii, H., Yamada, H., and Liu, L. P. 2001. Weak and frequent monsoon precipitation over the Tibetan Plateau. Journal of the Meteorological Society of Japan, 79(1B), 419-434. [doi:10.2151/ jmsj.79.419]
Xie, P. P., and Arkin, P. A. 1995. An intercomparison of gauge observations and satellite estimates of monthly precipitation. Journal of Applied Meteorology, 34(5), 1143-1160. [doi:10.1175/1520-0450(1995)034 <1143:AIOGOA>2.0.CO;2]
Xie, P. P., Janowiak, J. E., Arkin, P. A., Adler, R., Gruber, A., Ferraro, R., Huffman, G. J., and Curtis, S. 2003. GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. Journal of Climate, 16(13), 2197-2214. [doi:10.1175/2769.1]
Yanai, M., Li, C., and Song, Z. 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. Journal of the Meteorological Society of Japan, 70(1B), 319-351.
Ye, D. Z., and Gao, Y. X. 1979. The Meteorology of the Qinghai-Xizang (Tibet) Plateau. Beijing: Science Press. (in Chinese)
Yin, Z. Y., Zhang, X. Q., Liu, X. D., Colella, M., and Chen, X. L. 2008. An assessment of the biases of satellite rainfall estimates over the Tibetan Plateau and correction methods based on topographic analysis. Journal of Hydrometeorology, 9(3), 301-326. [doi:10.1175/2007JHM903.1]
Zhang, L. L., Su, F. G., Yang, D. Q., Hao, Z. C, and Tong, K. 2013. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. Journal of Geophysical Research, 118(15), 8500-8518. [doi:10.1002/jgrd.50665]

Similar articles

Copyright by Water Science and Engineering