Water Science and Engineering 2014, 7(3) 277-287 DOI:   doi:10.3882/j.issn.1674-2370.2014.03.004  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
PDF(1619KB)
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
solute transport
single rough fracture
lattice Boltzmann method
self-affinity
breakthrough curve
Authors
ZHI-FANG -Zhou
PubMed
Article by
Article by Zhi-Fang,.Z

 Lattice Boltzmann simulation of solute transport in a single rough fracture

Zhi DOU*, Zhi-fang ZHOU

School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, P. R. China

Abstract

    In this study, the lattice Boltzmann method (LBM) was used to simulate the solute transport in a single rough fracture. The self-affine rough fracture wall was generated with the successive random addition method. The ability of the developed LBM to simulate the solute transport was validated by Taylor dispersion. The effect of fluid velocity on the solute transport in a single rough fracture was investigated using the LBM. The breakthrough curves (BTCs) for continuous injection sources in rough fractures were analyzed and discussed with different Reynolds numbers (Re). The results show that the rough fracture wall leads to a large fluid velocity gradient across the aperture. Consequently, there is a broad distribution of the immobile region along the rough fracture wall. This distribution of the immobile region is very sensitive to the Re and fracture geometry, and the immobile region is enlarged with the increase of Re and roughness. The concentration of the solute front in the mobile region increases with the Re. Furthermore, the Re and roughness have significant effects on BTCs, and the slow solute molecule exchange between the mobile and immobile regions results in a long breakthrough tail for the rough fracture. This study also demonstrates that the developed LBM can be effective in studying the solute transport in a rough fracture.

Keywords solute transport   single rough fracture   lattice Boltzmann method   self-affinity   breakthrough curve  
Received 2013-05-28 Revised 2013-12-06 Online: 2014-07-25 
DOI: doi:10.3882/j.issn.1674-2370.2014.03.004
Fund:
This work was supported by the National Natural Science Foundation of China (Grants No. 51079043, 41172204, and 51109139) and the Natural Science Foundation of Jiangsu Province (Grant No. BK2011110).
Corresponding Authors: Zhi DOU
Email: douz@hhu.edu.cn
About author:

References:

Auradou, H., Hulin, J. P., and Roux, S. 2001. Experimental study of miscible displacement fronts in rough self-affine fractures. Physical Review E, 63(6), 066306. [doi:10.1103/PhysRevE.63.066306]

Bodin, J., Delay, F., and de Marsily, G. 2003. Solute transport in a single fracture with negligible matrix permeability: 2. Mathematical formalism. Hydrogeology Journal, 11(4), 434-454. [doi:10.1007/ s10040-003-0269-1]

Boffa, J. M., Allain, C., and Hulin, J. P. 1998. Experimental analysis of fracture rugosity in granular and compact rocks. The European Physical Journal-Applied Physics, 2(3), 281-289. [doi:10.1051/ epjap:1998194]

Cai, J. C., Yu, B. M., Zuo, M. Q., and Mei, M. F. 2010. Fractal analysis of surface roughness of particles in porous media. Chinese Physics Letters, 27(2), 024705. [doi:10.1088/0256-307x/27/2/024705]

Cardenas, M. B., Slottke, D. T., Ketcham, R. A., and Sharp, J. M. 2009. Effects of inertia and directionality on flow and transport in a rough asymmetric fracture. Journal of Geophysical Research: Solid Earth, 114(B6), B6204. [doi:10.1029/2009jb006336]

Crandall, D., Bromhal, G., and Karpyn, Z. T. 2010. Numerical simulations examining the relationship between wall-roughness and fluid flow in rock fractures. International Journal of Rock Mechanics and Mining Sciences, 47(5), 784-796. [doi:10.1016/j.ijrmms.2010.03.015]

Dou, Z., Zhou, Z. F., Huang, Y., and Wu, W. 2012. Numerical study of non-aqueous phase liquid transport in a single filled fracture by lattice boltzmann method. Journal of Hydrodynamics, Ser. B, 24(1), 130-137. [doi:10.1016/s1001-6058(11)60227-8]

Dou, Z., Zhou, Z., and Sleep, B. E. 2013. Influence of wettability on interfacial area during immiscible liquid invasion into a 3D self-affine rough fracture: Lattice Boltzmann simulations. Advances in Water Resources, 61, 1-11. [doi:10.1016/j.advwatres.2013.08.007]

Or, D., and Tuller, M. 2000. Flow in unsaturated fractured porous media: Hydraulic conductivity of rough surfaces. Water Resources Research, 36(5), 1165-1177. [doi:10.1029/2000WR900020]

Qian, J. Z., Chen, Z., Zhan, H. B., and Guan, H. C. 2011. Experimental study of the effect of roughness and Reynolds number on fluid flow in rough-walled single fractures: A check of local cubic law. Hydrological Processes, 25(4), 614-622. [doi:10.1002/hyp.7849]

Raven, K. G., Novakowski, K. S., and Lapcevic, P. A. 1988. Interpretation of field tracer tests of a single fracture using a transient solute storage model. Water Resources Research, 24(12), 2019-2032. [doi:10.1029/WR024i012p02019]

Schmittbuhl, J., Gentier, S., and Roux, S. 1993. Field measurements of the roughness of fault surfaces. Geophysical Research Letters, 20(8), 639-641. [doi:10.1029/93gl00170]

Stockman, H. W., Li, C. H., and Wilson, J. L. 1997. A lattice-gas and lattice Boltzmann study of mixing at continuous fracture junctions: Importance of boundary conditions. Geophysical Research Letters, 24(12), 1515-1518. [doi:10.1029/97gl51471]

Thompson, M. E. 1991. Numerical simulation of solute transport in rough fractures. Journal of Geophysical Research: Solid Earth, 96(B3), 4157-4166. [doi:10.1029/90jb02385].

Voss, R. F. 1988. Fractals in nature: From characterization to simulation. The Science of Fractal Images, 21-70. New York: Springer. [doi:10.1007/978-1-4612-3784-6_1]

Yeo, W. 2001. Effect of fracture roughness on solute transport. Geosciences Journal, 5(2), 145-151. [doi:10.1007/bf02910419].

Zhang, R. D. 2000. Generalized transfer function model for solute transport in heterogeneous soils. Soil Science Society of America Journal, 64(5), 1595-1602. [doi:10.2136/sssaj2000.6451595x].

Zhang, X. X., Crawford, J. W., Glyn Bengough, A., and Young, L. M. 2002. On boundary conditions in the lattice Boltzmann model for advection and anisotropic dispersion equation. Advances in Water Resources, 25(6), 601-609. [doi:10.1016/S0309-1708(02)00027-1].

Zhou, J. G. 2009. A lattice Boltzmann method for solute transport. International Journal for Numerical Methods in Fluids, 61(8), 848-863. [doi:10.1002/fld.1978].

 

Similar articles

Copyright by Water Science and Engineering