Water Science and Engineering 2016, 9(1) 21-32 DOI:   http://dx.doi.org/10.1016/j.wse.2016.03.001  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
PDF(10994KB)
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
Wave extremes
Climate change
Nonstationarity
GEV-CDN
Principal component analysis
Authors
Panagiota Galiatsatoua
Christina Anagnostopouloub
Panayotis Prinosa
PubMed
Article by Panagiota Galiatsatoua
Article by Christina Anagnostopouloub
Article by Panayotis Prinosa

Modeling nonstationary extreme wave heights in present and future climate of Greek Seas

Panagiota Galiatsatoua*, Christina Anagnostopouloub, Panayotis Prinosa

a Hydraulics Laboratory, Division of Hydraulics and Environmental Research, Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
b Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki,  Thessaloniki 54124, Greece

Abstract

In this study the generalized extreme value (GEV) distribution function was used to assess nonstationarity in annual maximum wave heights for selected locations in the Greek Seas, both in the present and future climate. The available significant wave height data were divided into groups corresponding to the present period (1951 to 2000), a first future period (2001 to 2050), and a second future period (2051 to 2100). For each time period, the parameters of the GEV distribution were specified as functions of time-varying covariates and estimated using the conditional density network (CDN). For each location and selected time period, a total number of 29 linear and nonlinear models were fitted to the wave data, for a given combination of covariates. The covariates used in the GEV-CDN models consisted of wind fields resulting from the Regional Climate Model version 3 (RegCM3) developed by the International Center for Theoritical Physics (ICTP) with a spatial resolution of 10 km × 10 km, after being processed using principal component analysis (PCA). The results obtained from the best fitted models in the present and future periods for each location were compared, revealing different patterns of relationships between wind components and extreme wave height quantiles in different parts of the Greek Seas and different periods. The analysis demonstrates an increase of extreme wave heights in the first future period as compared with the present period, causing a significant threat to Greek coastal areas in the North Aegean Sea and the Ionian Sea.

Keywords Wave extremes   Climate change   Nonstationarity   GEV-CDN   Principal component analysis  
Received 2015-06-23 Revised 2015-11-03 Online: 2016-01-31 
DOI: http://dx.doi.org/10.1016/j.wse.2016.03.001
Fund:

This work was co-financed by the European Social Fund and Greek National Funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)-Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

Corresponding Authors:
Email: pgaliats@civil.auth.gr
About author:

References:

AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., Sorooshian, S., 2013. Extremes in a Changing Climate: Detection, Analysis and Uncertainty. Springer-Verlang.
Bartzokas, A, Metaxas, D.A., 1993. Covariability and climatic changes of the lower-troposphere temperatures over the northern hemisphere. Il Nuovo Cimento, 16(4), 359–373. http://dx.doi.org/10.1007/BF02507647.
Benzi, R., Deidda, R., Marrocu, M., 1997. Characterization of temperature and precipitation fields over Sardinia with principal component analysis and singular spectrum analysis. International Journal of Climatology, 17(11), 1231–1262. http://dx.doi.org/10.1002/(SICI)1097-0088(199709)17:11<1231::AID-JOC170>3.0.CO;2-A
Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Springer-Verlang, New York.
Booij, N., Ris, R.C., Holthuijsen, L.H., 1999. A third-generation wave model for coastal regions, 1: Model description and validation. Journal of Geophysical Research, 104(C4), 7649–7666. http://dx.doi.org/doi:10.1029/98JC02622.
Cacciamani, C., Nanni, S., Tibaldi, S., 1994. Mesoclimatology of winter temperature and precipitation in the Po Valley of northern Italy. International Journal of Climatology, 14(7), 777–814. http://dx.doi.org/10.1002/joc.3370140707.
Caires, S., Swail, V.R., Wang, X.L., 2006. Projection and analysis of extreme wave climate. Journal of Climate, 19(21), 5581–5605. http://dx.doi.org/10.1175/JCLI3918.1.
Cannon, A.J., 2010. A flexible nonlinear modelling framework for nonstationary generalized extreme value analysis in hydroclimatology. Hydrological Processes, 24(6), 673–685. http://dx.doi.org/10.1002/hyp.7506.
Casas-Prat, M., Sierra, J.P., 2011. Future scenario simulations of wave climate in the NW Mediterranean Sea. Journal of Coastal Research, SI64, 200–204. http://dx.doi.org/10.1002/hyp.7506.
Coles, S., 2001. An Introduction to Statistical Modelling of Extreme Values. Springer, London.
Debernard, J.B, Roed, L.P., 2008. Future wind, wave and storm surge climate in the Northern Seas: A revisit. Tellus, 60(3), 427–438, http://dx.doi.org/10.1111/j.1600-0870.2008.00312.x.
Ehrendorfer, M., 1987. A regionalization of Austria's precipitation climate using principal component analysis. Journal of Climatology, 7(1), 71–89. http://dx.doi.org/10.1002/joc.3370070107.
Gaertner, M.A., Jacob, D., Gil, V., Dominguez, M., Padorno, E., Sanchez, E., Castro, M., 2007. Tropical cyclones over the Mediterranean Sea in climate change simulations. Geophysical Research Letters, 34(14), L14711. http://dx.doi.org/10.1029/2007GL029977.
Galiatsatou, P., Prinos, P., 2014. Analyzing the effects of climate change on wave height extremes in the Greek Seas. In: Lehfeldt, R. and Kopmann, R. eds., Proceedings of the International Conference on Hydroscience and Engineering (ICHE) 2014, Bundesanstalt für Wasserbau, Hamburg, pp773–781
Grevemeyer, I., Herber, R., Essen, H.-H., 2000. Microseismological evidence for a changing wave climate in the northeast Atlantic Ocean. Nature, 408(6810), 349–352. http://dx.doi.org/10.1038/35042558.
Hosking, J.R.M., Wallis, J.R., Wood, E.F., 1985. Estimation of the generalized extreme-value distribution by the method of probability weighted moments. Technometrics, 27(3), 251–261. http://dx.doi.org/10.2307/1269706.
Hosking, J.R.M., Wallis, J.R., 1997. Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge University Press, Cambridge.
Hurvich, C.M., Tsai, C., 1989. Regression and time series model selection in small samples. Biometrika, 76(2), 297–307. http://dx.doi.org/10.1093/biomet/76.2.297.
Jacob, D., Barring, L. Christensen, O.B., Christensen, J.H., de Castro, M., Deque, M., Giorgi, F., Hagemann, S., Hirschi, M., Jones, R., et al., 2007. An inter-comparison of regional climate models for Europe: Model performance in present-day climate. Climatic Change, 81(S1), 31–52, http://dx.doi.org/10.1007/s10584-006-9213-4.
Khaliq, M.N., Ouarda, T.B.M.J., Ondo, J-C., Gachon, P., Bobee, B., 2006. Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: A review. Journal of Hydrology, 329(3–4), 534–552, http://dx.doi.org/ 10.1016/j.jhydrol.2006.03.004.
Lingis, P., Michaelidis, S.C., 2009. Teleconnection patterns of the Siberian Anticyclone and precipitation over Cyprus. Atmosheric Research, 94(4), 663–674.  http://dx.doi.org/10.1016/j.atmosres.2009.05.013
Lionello, P., Cogo, S., Galati, M.B., Sanna, A., 2008. The Mediterranean surface wave climate inferred from future scenario simulations. Global and Planetary Change, 63(2–3), 152–162.  http://dx.doi.org/10.1016/j.gloplacha.2008.03.004.
Martins, E.S., Stedinger, J.R., 2000. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research, 36(3), 737–744. http://dx.doi.org/10.1029/1999WR900330.
Méndez, F.J., Menéndez, M., Luceño, A., Losada, I.J., 2006. Estimation of the long-term variability of extreme significant wave height using a time-dependent Peak Over Threshold (POT) model. Journal of Geophysical Research, 111(C7), C07024. http://dx.doi.org/10.1029/2005JC003344.
Méndez, F.J., Menéndez, M., Luceño, A., Medina, R., Graham, N.E., 2008. Seasonality and duration in extreme value distributions of significant wave height. Ocean Engineering, 35(1), 131–138.  http://dx.doi.org/10.1016/j.oceaneng.2007.07.012.
Menéndez, M., Méndez, F.J., Izaguirre, C., Luceño, A., Losada, I.J., 2009. The influence of seasonality on estimating return values of significant wave height. Coastal Engineering, 56(3), 211–219.  http://dx.doi.org/10.1016/j.coastaleng.2008.07.004.
Muñoz-Diaz, D., Rodrigo, F.S., 2004. Spatio-temporal patterns of seasonal rainfall in Spain (1912–2000) using cluster and principal component analysis: Comparison. Annales Geophysicae, 22, 1435–1448. http://dx.doi.org/10.5194/angeo-22-1435-2004.
Preisendorfer, R. W., 1988. Principal Component Analysis in Meteorology and Oceanography. Elsevier, Amsterdam.
Reusch, D.B., Mayewski, P.A., Whitlow, S.I., Pittalwala, I.I., Twickler, M.S., 1999. Spatial variability of climate and past atmospheric circulation patterns from central west antarctic glaciochemistry. Journal of Geophysical Research, 104(D6), 5985–6001. http://dx.doi.org/10.1029/1998JD200056.
Rigby, R.A., Stasinopoulos, D.M., 2005. Generalized additive models for location, scale and shape. Applied Statistics, 54(3), 507–554. http://dx.doi.org/10.1111/j.1467-9876.2005.00510.x.
Schwarz, G., 1978. Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.  http://dx.doi.org/10.2307/2958889.
Smith, T.M., Reynolds, R.W., Livezey, R.E., Stokes, D.C., 1996. Reconstruction of historical sea surface temperatures using empirical orthogonal functions. Journal of Climate, 9(6), 1403–1420. http://dx.doi.org/10.1175/1520-0442(1996)009<1403:ROHSST> 2.0.CO;2.
Smith, R.L., 1985. Maximum likelihood estimation in a class of nonregular cases. Biometrika, 72(1), 67–90. http://dx.doi.org/ 10.1093/biomet/72.1.67
Villarini, G., Smith, J.A., Serinaldi, F., Bates, J., Bates, P.D., Krajewski, W.F., 2009. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Advances in Water Resources, 32(8), 1255–1266.  http://dx.doi.org/10.1016/j.advwatres.2009.05.003.
Villarini, G., Smith, J.A., Napolitano, F., 2010. Nonstationary modelling of a long record of rainfall and temperature over Rome. Advances in Water Resources, 33(10), 1256–1267. http://dx.doi.org/10.1016/j.advwatres.2010.03.013.
von Storch, H., Zwiers, F.W., 1999. Statistical Analysis in Climate Research. Cambridge University Press, Cambridge.
Wang, X.L., Swail, V.R., 2001. Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. Journal of Climate, 14(10), 2204–2221.  http://dx.doi.org/10.1175/1520-0442(2001)014<2204:COEWHI>2.0.CO;2.
Wilks, D.S., 2006. Statistical Methods in the Atmospheric Sciences. Elsevier, San Diego.
Yee, T.W., Stephenson, A.G., 2007. Vector generalized linear and additive extreme value models. Extremes, 10(1), 1–19, http://dx.doi.org/10.1007/s10687-007-0032-4.

Similar articles
1.Qing-fang HU;Yin-tang WANG.Impact assessment of climate change and human activities on annual highest water level of Taihu Lake[J]. Water Science and Engineering, 2009,2(1): 1-15
2.Lan-lan YU, Zi-qiang XIA, Jing-ku LI, Tao CAI.Climate change characteristics of Amur River[J]. Water Science and Engineering, 2013,6(2): 131-144
3. Wei ZHANG, Shou-sheng MU, Yan-jing ZHANG, Kai-min CHEN.Seasonal and interannual variations of flow discharge from Pearl River into sea[J]. Water Science and Engineering, 2012,5(4): 399-409
4. Lin-lin CAI, Guang-wei ZHU, Meng-yuan ZHU, Hai XU, Bo-qiang QIN.Effects of temperature and nutrients on phytoplankton biomass during bloom seasons in Taihu Lake[J]. Water Science and Engineering, 2012,5(4): 361-374
5. Xin-e Tao, Hua Chen, Chong-yu Xu, Yu-kun Hou, Meng-xuan Jie.Analysis and prediction of reference evapotranspiration with climate change in Xiangjiang River Basin, China[J]. Water Science and Engineering, 2015,8(4): 273-281

Copyright by Water Science and Engineering