Water Science and Engineering 2018, 11(3) 214-219 DOI:   https://doi.org/10.1016/j.wse.2018.10.001  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Dairy wastewater
Photolysis and photocatalysis

Disinfection of dairy wastewater effluent through solar photocatalysis processes

Mojtaba Afsharniaa, Mojtaba Kianmehrb, Hamed Biglaria, Abdollah Dargahic, Abdolreza Karimid, *

a Faculty of Health, Gonabad University of Medical Sciences, Gonabad 9691793718, Iran
b Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad 9691793718, Iran
c Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah 6716139663, Iran
d Engineering Faculty, Qom University of Technology, Qom 9183673531, Iran


Due to the strict regulations and reuse policies that govern wastewater’s use as an irrigation water resource for agricultural purposes, especially in dry climates, optimization of the disinfection process is of the utmost importance. The effects of solar radiation along with Titanium dioxide (TiO2) nanoparticles applied to optimization of the photolysis and photocatalysis processes for inactivating heterotrophic bacteria were investigated. Temperature, pH, and dissolved oxygen fluctuations in the dairy wastewater effluent treated by activated sludge were examined. In addition, different dosages of TiO2 were tested in the solar photocatalysis (ph-C S) and concentrated solar photocatalysis (ph-C CS) processes. The results show that the disinfection efficiencies of the solar photolysis (ph-L S) and concentrated solar photolysis (ph-L CS) processes after 30 minutes were about 10.5% and 68.9%, respectively, and that the ph-C S and ph-C CS processes inactivated 41% and 97% of the heterotrophic bacteria after 30 minutes, respectively. The pH variation in these processes was negligible. Using the ph-L CS and ph-C CS processes, the synergistic effect between the optical and thermal inactivation caused complete disinfection after three hours. However, disinfection was faster in the ph-C CS process than in the ph-L CS process. Significant correlations were found between the disinfection efficiency and the variation of the dissolved oxygen concentration in the ph-C S and ph-C CS processes, while the correlations between the disinfection efficiency and temperature variation were not significant in the ph-L S and ph-C S processes. Moreover, the oxygen consumption rate was greatest (3.2 mg?L-1) in the ph-C CS process. Hence, it could be concluded that ph-C CS is an efficient photocatalysis process for disinfection of dairy wastewater effluent.

Keywords Dairy wastewater   Disinfection   Photocatalyst   Solar   Photolysis and photocatalysis   TiO2  
Received 2016-07-15 Revised 2018-01-22 Online: 2018-07-30 
DOI: https://doi.org/10.1016/j.wse.2018.10.001

This work was supported by the foundation of the Gonabad University of Medical Sciences, in Gonabad, Iran (Grant No. 92131).

Corresponding Authors: Abdolreza Karimi
Email: arkarimi6@yahoo.com
About author:


Agunwamba, J.C., Theophilus, I.T., Emenike, P.C., 2013. Effect of disinfectants on aerobic sewage degradation using dettol and izal as case study. International Journal of Structural and Civil Engineering Research, 2(4), 184-194.
Alipour, V., Rezaei, L., Etesamirad, M.R., Rahdar, S., Narooie, M.R., Salimi, A., Hasani, J., Khaksefidi, R., Sadat, S.A., Biglari, H., 2017. Feasibility and applicability of solar disinfection (SODIS) for point-of-use water treatment in Bandar Abbas, South of Iran. Journal of Global Pharma Technology, 9(1), 40-46.
Barreca, S., Velez colmenares, J.J., Pace, A., Orecchio, S., Pulgarin, C., 2015. Escherichia coli inactivation by neutral solar heterogeneous photo-Fenton (HPF) over hybrid iron/montmorillonite/alginate beads. Journal of Environmental Chemical Engineering, 3(1), 317-324. https://doi.org/10.1016/j.jece.2014.10.018.
Bartram, J., Cotruvo, J., Exner, M., Fricker, C., Glasmacher, A., 2003. Heterotrophic plate counts and drinking-water safety: The significance of HPCs for water quality and human health. Water Intelligence Online, 12(3), 57-58.
Biglari, H., Saeidi, M., Alipour, V., Rahdar, S., Sohrabi, Y., Khaksefidi, R., Narooie, M.R., Zarei, A., Ahamadabadi, M., 2016. Prospect of disinfection byproducts in water resources of Zabol. International Journal of Pharmacy and Technology, 8(3), 17856-17865.
Biglari, H., Afsharnia, M., Alipour, V., Khosravi, R., Sharafi, K., Mahvi, A.H., 2017. A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry. Environmental Science and Pollution Research, 24(4), 4105-4116. https://doi.org/10.1007/s11356-016-8079-x.
Borges, M.E., Sierra, M., Esparza, P., 2017. Solar photocatalysis at semi-pilot scale: Wastewater decontamination in a packed-bed photocatalytic reactor system with a visible-solar-light-driven photocatalyst. Clean Technologies and Environmental Policy, 19(4), 1239-1245. https://doi.org/10.1007/s10098-016-1312-y.
Demirel, B., Yenigun, O., Onay, T.T., 2005. Anaerobic treatment of dairy wastewaters: A review. Process Biochemistry, 40(8), 2583-2595. https://doi.org/10.1016/j.procbio.2004.12.015.
Fernández-Ibáñez, P., Polo-lópez, M.I., Malato, S., Wadhwa, S., Hamilton, J.W.J., Dunlop, P.S.M., D’sa, R., Magee, E., O’shea, K., Dionysiou, D.D., Byrne, J.A., 2015. Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chemical Engineering Journal, 261, 36-44.  https://doi.org/10.1016/j.cej.2014.06.089.
Fotiou, T., Triantis, T., Kaloudis, T., Hiskia, A., 2015. Photocatalytic degradation of cylindrospermopsin under UV-A, solar and visible light using TiO2. Mineralization and intermediate products. Chemosphere, 119, S89-S94. https://doi.org/10.1016/j.chemosphere.2014.04.045.
García-Fernández, I., Fernández-calderero, I., Polo-lópez, M.I., Fernández-ibáñez, P., 2015. Disinfection of urban effluents using solar TiO2 photocatalysis: A study of significance of dissolved oxygen, temperature, type of microorganism and water matrix. Catalysis Today, 240(2), 30-38. https://doi.org/10.1016/j.cattod.2014.03.026.
Gelover, S., Gómez, L.A., Reyes, K., Teresa, L.M., 2006. A practical demonstration of water disinfection using TiO2 films and sunlight. Water Research, 40(17), 3274-3280. https://doi.org/10.1016/j.watres.2006.07.006.
Giannakis, S., Darakas, E., Escalas-cañellas, A., Pulgarin, C., 2015. Solar disinfection modeling and post-irradiation response of Escherichia coli in wastewater. Chemical Engineering Journal, 281(2), 588-598. https://doi.org/10.1016/j.cej.2015.06.077.
Helali, S., Polo-lópez, M.I., Fernández-ibáñez, P., Ohtani, B., Amano, F., Malato, S., Guillard, C., 2014. Solar photocatalysis: A green technology for E. coli contaminated water disinfection. Effect of concentration and different types of suspended catalyst. Journal of Photochemistry and Photobiology A: Chemistry, 276, 31-40. https://doi.org/10.1016/j.jphotochem.2013.11.011.
Kalt, P., Birzer, C., Evans, H., Liew, A., Padovan, M., Watchman, M., 2014. A solar disinfection water treatment system for remote communities. Procedia Engineering, 78, 250-258. https://doi.org/10.1016/j.proeng.2014.07.064.
Khosravi, R., Hossini, H., Heidari, M., Fazlzadeh, M., Biglari, H., Taghizadeh, A., Barikbin, B., 2017. Electrochemical decolorization of reactive dye from synthetic wastewater by mono-polar Aluminum electrodes system. International Journal of Electrochemical Science, 12(6), 4745-4755. https://doi.org/10.20964/2017.06.7.5.
Krzemińska, D., Neczaj, E., Borowski, G., 2015. Advanced oxidation processes for food industrial wastewater decontamination. Journal of Ecological Engineering, 16(2), 61-71. https://doi.org/10.12911/22998993/1858.
Lawrie, K., Mills, A., Figueredo-fernández, M., Gutiérrez-alfaro, S., Manzano, M., Saladin, M., 2015. UV dosimetry for solar water disinfection (SODIS) carried out in different plastic bottles and bags. Sensors and Actuators B: Chemical, 208, 608-615. https://doi.org/10.1016/j.snb.2014.11.031.
Li, Y., Zhang, W., Niu, J., Chen, Y., 2012. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano, 6(6), 5164-5173. https://doi.org/10.1021/nn300934k.
Malato, S., Fernández-ibáñez, P., Maldonado, M.I., Blanco, J., Gernjak, W., 2009. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1-59. https://doi.org/10.1016/j.cattod.2009.06.018.
Malato, S., Maldonado, M.I., Fernández-ibáñez, P., Oller, I., Polo, I., Sánchez-moreno, R., 2016. Decontamination and disinfection of water by solar photocatalysis: The pilot plants of the Plataforma solar de Almeria. Materials Science in Semiconductor Processing, 42(1), 15-23.  https://doi.org/10.1016/j.mssp.2015.07.017.
McGuigan, K.G., Méndez-Hermida, F., Castro-Hermida, J.A., Ares-Mazás, E., Kehoe, S.C., Boyle, M., Sichel, C., Fernández-Ibáñez, P., Meyer, B.P., Ramalingham, S., et al., 2006. Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water. Journal of Applied Microbiology, 101(2), 453-463. https://doi.org/10.1111/j.1365-2672.2006.02935.x.
McGuigan, K.G., Conroy, R.M., Mosler, H.J., Preez, M.D., Ubomba-jaswa, E., Fernandez-ibañez, P., 2012. Solar water disinfection (SODIS): A review from bench-top to roof-top. Journal of Hazardous Materials, 235–236, 29-46. https://doi.org/10.1016/j.jhazmat.2012.07.053.
Méndez-Hermida, F., Ares-Mazás, E., Mcguigan, K.G., Boyle, M., Sichel, C., Fernández-Ibáñez, P., 2007. Disinfection of drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO2. Journal of Photochemistry and Photobiology B: Biology, 88(2), 105-111. https://doi.org/10.1016/j.jphotobiol.2007.05.004.
Nalwanga, R., Quilty, B., Muyanja, C., Fernandez-Ibañez, P., Mcguigan, K.G., 2014. Evaluation of solar disinfection of E. coli under Sub-Saharan field conditions using a 25L borosilicate glass batch reactor fitted with a compound parabolic collector. Solar Energy, 100, 195-202. https://doi.org/10.1016/j.solener.2013.12.011.
Ndounla, J., Pulgarin, C., 2014. Evaluation of the efficiency of the photo Fenton disinfection of natural drinking water source during the rainy season in the Sahelian region. Science of The Total Environment, 493, 229-238. https://doi.org/10.1016/j.scitotenv.2014.05.139.
Oates, P.M., Shanahan, P., Polz, M.F., 2003. Solar disinfection (SODIS): Simulation of solar for global assessment and application for point-of-use water treatment in Haiti. Water Research, 37(1), 47-54. https://doi.org/10.1016/S0043-1354(02)00241-5.
Ortega-Gómez, E., García, B.E., Martín, M.M.B., Ibáñez, P.F., Pérez, J.A.S., 2014. Inactivation of natural enteric bacteria in real municipal wastewater by solar photo-fenton at neutral pH. Water Research, 63(1), 316-324. https://doi.org/10.1016/j.watres.2014.05.034.
Pinho, S.C., Nunes, O.C., Lobo-da-cunha, A., Almeida, M.F., 2015. Inactivation of Geobacillus stearothermophilus spores by alkaline hydrolysis applied to medical waste treatment. Journal of Environmental Management, 161, 51-56. https://doi.org/10.1016/j.jenvman.2015.06.045.
Polo-López, M.I., Fernández-ibáñez, P., Ubomba-jaswa, E., Navntoft, C., García-fernández, I., Dunlop, P.S.M., Schmid, M., Byrne, J.A., Mcguigan, K.G., 2011. Elimination of water pathogens with solar using an automated sequential batch CPC reactor. Journal of Hazardous Materials, 196, 16-21. https://doi.org/10.1016/j.jhazmat.2011.08.052.
Rand, M.C., Greenberg, A.E., Taras, M.J., 1976. Standard methods for the examination of water and wastewater, fourth ed. American Public Health Association, Washington, D.C.
Reed, R.H., 2004. The inactivation of microbes by sunlight: Solar disinfection as a water treatment process. Advances in applied microbiology, 54, 333-366. https://doi.org/10.1016/S0065-2164(04)54012-1.
Sajjadi, S.A., Asgari, G., Biglari, H., Chavoshani, A., 2016. Pentachlorophenol removal by persulfate and microwave processes coupled from aqueous environments. Journal of Engineering and Applied Sciences, 11(5), 1058-1064. https://doi.org/10.3923/jeasci.2016.1058.1064.
Shukla, P., Fatimah, I., Wang, S.B., Ang, H.M., Tadé, M.O., 2010. Photocatalytic generation of sulphate and hydroxyl radicals using zinc oxide under low-power UV to oxidise phenolic contaminants in wastewater. Catalysis Today, 157(1-4), 410-414. https://doi.org/10.1016/j.cattod.2010.04.015.
Sivrio?lu, Ö., Yonar, T., 2015. Determination of the acute toxicities of physicochemical pretreatment and advanced oxidation processes applied to dairy effluents on activated sludge. Journal of Dairy Science, 98(4), 2337-2344. https://doi.org/10.3168/jds.2014-8278.
Zazouli, M.A., Ebrahimzadeh, M.A., Charati, J.Y., Dezfoli, A.S., Rostamali, E., Veisi, F., 2013. Effect of sunlight and ultraviolet radiation in the titanium dioxide (TiO2) nanoparticles for removal of furfural from water. J Mazand Univ Med Sci  23(107), 126-138 (in Persian).
Zhang, T., Wang, X.G, Zhang, X.W, 2014. Recent progress in TiO2-mediated solar photocatalysis for industrial wastewater treatment. International Journal of Photoenergy, 2014(1), 1-12. http://dx.doi.org/10.1155/2014/607954.

Similar articles

Copyright by Water Science and Engineering