Water Science and Engineering 2018, 11(3) 220-228 DOI:   https://doi.org/10.1016/j.wse.2018.09.004  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
PDF(3765KB)
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
Dynamic tidal power
Marine renewable energy
Added mass
Phase-shift
Coastal engineering
Delft3D
Authors
PubMed

Numerical study of hydrodynamic mechanism of dynamic tidal power

Peng Dai a,b, Ji-sheng Zhang a,c, Jin-hai Zheng a,c*, Kees Hulsbergen d, Gijs van Banning e, Jeroen Adema e, Zi-xuan Tang c

a  State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
b  State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
c  College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China
d  Hulsbergen Hydraulic Innovation & Design H2iD, Dieren, 6953 CR, The Netherlands
e  ARCADIS Nederland BV, Zwolle, 8017 JS, The Netherlands

Abstract

 Dynamic tidal power is a new way of capturing tidal energy by building a water head using a dike perpendicular to the coast. This study explored the hydrodynamic mechanism of the water head across an intended dynamic tidal power dike system using the Delft3D-FLOW software module. The propagating wave was simulated in a rectangular domain with a horizontal sea bottom at a 30-m depth. A significant water head was created across the dike by blocking the water. The water head increased with increasing dike length and increasing undisturbed tidal current acceleration. The maximum water head for the dike with a length of 50 km, located 900 km from the western boundary, was 2.15 m, which exceeded the undisturbed tidal range. The time series of the water head behaved in a manner identical to the undisturbed tidal current acceleration. The distribution of the water head over the dike assumed an elliptical shape. A parasitic wave was generated at the attachment and scattered outward. The phase lag across the dike did not behave as a linear function of the detour distance.

Keywords Dynamic tidal power   Marine renewable energy   Added mass   Phase-shift   Coastal engineering   Delft3D  
Received 2017-05-04 Revised 2018-01-05 Online: 2018-07-30 
DOI: https://doi.org/10.1016/j.wse.2018.09.004
Fund:

This work was supported by the National Key R&D Program of China (Grant No. 2017YFC1404200), the National Natural Science Foundation of China (Grants No. 51520105014 and 51509168), and the National Special Funds for Basic Scientific Research for Research Institutes (Grant No. Y218008).

Corresponding Authors: Jin-hai Zheng
Email: jhzheng@hhu.edu.cn
About author:

References:

Allard, R., Dykes, J., Hsu, Y.L., Kaihatu, J., Conley, D., 2008. A real-time nearshore wave and current predication system. Journal of Marine Systems. 69(1-2), 37-58. https://doi.org/10.1016/j.jmarsys.2007.02.020.
Chen, Z.Y., 1980. The Tide. Science Press, Beijing (in Chinese).
Clark, H.R., 2007. Elements of Tidal-Electric Engineering. IEEE Press, Piscataway.
Dai, P., Zhang, J.S., Zheng, J.H., 2017a. Predictions for dynamic tidal power and associated local hydrodynamic impact in the Taiwan Strait, China. Journal of Coastal Research, 33(1), 149-157. https://doi.org/10.2112/JCOASTRES-D-16-00068.1.
Dai, P., Zhang, J.S., Zheng, J.H., 2017b. Tidal current and tidal energy changes imposed by a dynamic tidal power system in the Taiwan Strait, China. Journal of Ocean University China, 16(6), 953-964. https://doi.org/10.1007/s11802-017-3237-4.
Deltares, 2011. Delft3d-FLOW User Manual version 3.14. Deltares, Delft.
Etemadi, A., Emami, Y., AsefAfshar, O., Emdadi, A., 2011. Electricity generation by the tidal barrages. Energy Procedia, 12, 928-935. https://doi.org/10.1016/j.egypro.2011.10.122.
Harcourt-Baldwin, J.L., Diedericks, G.P.J., 2006. Numerical modelling and analysis of temperature controlled density currents in Tomales Bay, California. Estuarine Coastal and Shelf Science, 66(3-4), 417-428. https://doi.org/10.1016/j.ecss.2005.10.001.
Hulsbergen, K., Steijn, R., van Banning, G., Klopman, G., Astrid, F., 2005. Dynamic tidal power (DTP). In: Proceedings of the 6th European Wave and Tidal Energy Conference. Glasgow, pp. 215-221.
Hulsbergen, K., Steijn, R., Hassan, R., Klopman, G., Hurdle, D., 2008. Dynamic tidal power (DTP): A new approach to exploit tides. In: Proceedings of the 2nd International Conference on Ocean Energy. Brest, pp. 1-10.
Hulsbergen, K., de Boer, D., Steijn, R., van Banning, G., 2012. Dynamic tidal power for Korea. In: Proceedings of the 1st Asian Wave and Tidal Conference. Seoul, pp. 1-10.
Liu, Q., Zhang, Y., 2014. Hydrodynamic characteristic study on phase-shift tidal power for Y-shaped dams. Journal of Hydraulic Research, 52(3), 356-365. https://doi.org/10.1080/00221686.2013.875071.
Mei, C., 2012. Note on tidal diffraction by a coastal barrier. Applied Ocean Research, 36, 22-25. https://doi.org/ 10.1016/j.apor.2012.01.005.
Pawlowicz, R., Beardsley, B., Lentz, S., 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE, Computers and Geosciences, 28(8), 929-937. https://doi.org/10.1016/S0098-3004(02)00013-4.
Robins, P.E., Neill, S.P., Lewis, M.J., Ward, S.L., 2015. Characterising the spatial and temporal variability of the tidal stream energy resource over the northwest European shelf seas. Applied Energy, 147, 510-522. https://doi.org/10.1016/j.apenergy.2015.03.045.
Rourke, O.F., Boyle, F., Reynolds, A., 2009. Tidal energy update 2009. Applied Energy, 87, 398-409. https://doi.org/ 10.1016/j.apenergy.2009.08.014.
Suh, S., Lee, H., Kim, H., 2014. Spatio-temporal variability of tidal asymmetry due to multiple coastal construction along the west coast of Korea. Estuarine, Coastal, and Shelf Science, 151, 336-346. https://doi.org/10.1016/j.ecss.2014.09.007.
van Dongeren, A.R., Svendsen, I.A., 1997. Absorbing-generating boundary condition for shallow water models. Journal of Waterway, Port, Coastal, and Ocean Engineering, 123(6), 303-313. https://doi.org/ 10.1016/j.compfluid.2017.05.018.
van Maren, D.S., 2007. Grain size and sediment concentration effects on channel patterns of silt-laden rivers. Sedimentary Geology, 202(1-2), 297-316. https://doi.org/10.1016/j.sedgeo.2007.04.001.
Verboom, G.K., Slob, A., 1984. Weakly-reflective boundary conditions for two dimensional water flow problems. Advances in Water Resources, 7(4), 192-197. https://doi.org/10.1016/0309-1708(84)90018-6.
Xia, J., Falconer, R.A., Lin, B., Tan, G., 2012. Estimation of annual energy output from a tidal barrage using two different methods. Applied Energy, 93, 327-336. https://doi.org/10.1016/j.apenergy.2011.12.049.
Zhang, C., Zheng, J.H., Dong, X.W., Cao, K., Zhang, J.S., 2013. Morphodynamic response of the Xiaomiaohong tidal channel to a coastal reclamation project in Jiangsu Coast, China. Journal of Coastal Research, (SI65), 630-635. https://doi.org/10.2112/SI65-107.1.
Zhang, J., Miu, B., Xu, X., Yang, W., Zhang, F., Pan, C., Shi, W., 2012. Numerical research on dynamic water head between sea and gulf: A new exploration on the development of tidal energy. Ocean Technology, 31, 83-86 (in Chinese).
Zhang, W.S., 2005. Numerical Modeling of Tide Waves in Marginal Seas near China. M. E. Dissertation. Hohai University, Nanjing (in Chinese).
Zheng, J.H., Wang, J.C., Zhou, C.Y., Zhao, H.J., Sang, S., 2017. Numerical simulation of typhoon-induced storm surge along Jiangsu coast, Part II: Calculation of storm surge. Water Science and Engineering, 10(1), 8-16.  https://doi.org/10.1016/j.wse.2017.03.011.
Zheng, S., Zhang, Y., Zhang, Q., Zhang, J., 2012. Numerical study on hydrodynamic characteristics of tide on both sides of a T-type dike. Journal of Hydroelectric Engineering, 31(6), 172-178 (in Chinese).

Similar articles

Copyright by Water Science and Engineering