Water Science and Engineering 2019, 12(2) 115-120 DOI:   https://doi.org/10.1016/j.wse.2019.05.006  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Silt density index
Oxidation-reduction potential
Reverse osmosis
Membrane fouling

Correlations between silt density index, turbidity and oxidation-reduction potential parameters in seawater reverse osmosis desalination

Seyed Mohammad Hossein Fayaz a, Roya Mafigholami a,*,Fatemeh Razavian b, Karim Ghasemipanah c

a Department of Environment, West Tehran Branch, Islamic Azad University, Tehran 1949663311, Iran
b Department of Environment, Parand Branch, Islamic Azad University, Parand 3761396361, Iran
c Research Institute of Petroleum Industry, Tehran 1485733111, Iran


The reverse osmosis method is one of the most widely used methods of seawater desalination at present. Hydrophilic and desalting membranes in reverse osmosis systems are highly susceptible to the input pollutants. Various contaminants, including suspended organic and inorganic matter, result in membrane fouling and membrane degradation. Fundamental parameters such as the turbidity, the amount of chlorine injection, and silt density index (SDI) are the most predominant parameters of fouling control in the membranes. In this study, the operation system included a water intake unit, a pretreatment system, and an RO system. The pretreatment system encompassed a clarifier, a gravity sand filter, pressurized sand filters, and a cartridge filter. The correlation between the amount of chlorine injection in terms of the oxidation-reduction potential (ORP) and the SDI value of the input water was investigated at a specified site next to the Persian Gulf. The results showed that, at certain intervals of inlet turbidity, injection of a certain amount of chlorine into the raw water has a distinct effect on the decrease of SDI

Keywords Silt density index   Oxidation-reduction potential   Turbidity   Reverse osmosis   Membrane fouling  
Received 2018-07-12 Revised 2019-02-14 Online: 2019-06-30 
DOI: https://doi.org/10.1016/j.wse.2019.05.006
Corresponding Authors: Roya Mafigholami
Email: r.mafigholami@wtiau.ac.ir
About author:

Alhadidi, A., Blankert, B., Kemperman, A.J.B., Schippers, J.C., Wessling, M., van der Meer, W.G.J., 2011a. Effect of testing conditions and filtration mechanisms on SDI. Journal of Membrane Science 381(1-2), 142-151. https://doi.org/10.1016/j.memsci.2011.07.030.
Alhadidi, A., Kemperman, A.J.B., Schurer, R., Schippers, J.C., Wessling, M., van der Meer, W.G.J., 2011b. Using SDI, SDI+ and MFI to evaluate fouling in a UF/RO desalination pilot plant. Desalination 285, 153-162. https://doi.org/10.1016/j.desal.2011.09.049.
American Society for Testing and Materials (ASTM), 2012. Standard Test Methods for Chemical Oxygen Demand (Dichromate Oxygen Demand) of Water (D1252). ASTM International, West Conshohocken.
American Society for Testing and Materials (ASTM), 2014a. Standard Test Method for Silt Density Index (SDI) of Water (D4189-07). D19.08 on Membranes and Ion Exchange Materials. ASTM International, West Conshohocken.
American Society for Testing and Materials (ASTM), 2014b. Standard Test Method for Oxidation-Reduction Potential of Water (D1498-14). ASTM International, West Conshohocken, PA.
Choi, B.G., Kim, D.I., Hong, S., 2016. Fouling evaluation and mechanisms in a FO-RO hybrid process for direct potable reuse. Journal of Membrane Science, 520, 89-98. https://doi.org/10.1016/j.memsci.2016.07.035.
Jiang, S., Li, Y., Ladewig, B.P., 2017. A review of reverse osmosis membrane fouling and control strategies. Science of the Total Environment, 595, 567-583. https://doi.org/10.1016/j.scitotenv.2017.03.235.
Landaburu-Aguirre, J., García-Pacheco, R., Molina, S., Rodríguez-Sáez, L., Rabadán, J., García-Calvo, E., 2016. Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination. Desalination, 393, 16-30. https://doi.org/10.1016/j.desal.2016.04.002.
Mitrouli, S.T., Yiantsios, S.G., Karabelas, A.J., Mitrakas, M., F?llesdal, M., Kjolseth, P.A., 2008. Pretreatment for desalination of seawater from an open intake by dual-media filtration: Pilot testing and comparison of two different media. Desalination 222, 24-37. https://doi.org/10.1016/j.desal.2007.02.062.
Mosset, T., Bonnely, V., Petry, M., Sanz, M.A., 2008. The sensitivity of SDI analysis: From RO feed water to raw water. Desalination 222, 17–23. https://doi.org/10.1016/j.desal.2007.01.125.
Nezlin, N.P., Polikarpov, I.G., Yamani, F., Al, Y., Subba Rao, D.V., Ignatov, A.M., 2010. Satellite monitoring of climatic factors regulating phytoplankton variability in the Arabian (Persian) Gulf. Journal of Marine Systems 82, 47-60. https://doi.org/10.1016/j.jmarsys.2010.03.003.
Rachman, R.M., Ghaffour, N., Wali, F., Amy, G.L., 2013. Assessment of silt density index (SDI) as fouling propensity parameter in reverse osmosis (RO) desalination systems. Desalination and Water Treatment, 51, 1091–1103. https://doi.org/hdl.handle.net/10754/209376.
Sarai Atab, M., Smallbone, A.J., Roskilly, A.P., 2016. An operational and economic study of a reverse osmosis desalination system for potable water and land irrigation. Desalination 397, 174-184. https://doi.org/10.1016/j.desal.2016.06.020.
Sim, L.N., Chong, T.H., Taheri, A.H., Sim, S.T.V., Lai, L., Krantz, W.B., Fane, A.G., 2017. A review of fouling indices and monitoring techniques for reverse osmosis. Desalination 434, 169-188. https://doi.org/10.1016/j.desal.2017.12.009.
Simon, F.X., Berdalet, E., Gracia, F.A., España, F., Llorens, J., 2014. Seawater disinfection by chlorine dioxide and sodium hypochlorite. A comparison of biofilm formation. Water, Air, and Soil Pollution 225, 1921-1932. https://doi.org/10.1007/s11270-014-1921-1.
Sun, C., Xie, L., Li, X., Sun, L., Dai, H., 2015. Study on different ultrafiltration-based hybrid pretreatment systems for reverse osmosis desalination. Desalination 371, 18-25. https://doi.org/10.1016/j.desal.2015.05.020.
Weia, C., Laborie, S., Aima, R.B., Amy, G., 2012. Full utilization of silt density index (SDI) measurements for seawater pre-treatment. Journal of Membrane Science, 405, 212-218. https://doi.org/10.1016/j.memsci.2012.03.010.
Wenten, I.G., Khoiruddin, K.H., 2016. Reverse osmosis applications: Prospect and challenges. Desalination 391, 112-125. https://doi.org/10.1016/j.desal.2015.12.011.
Wimalawansa, S.J., 2013. Purification of contaminated water with reverse osmosis: Effective solution of providing clean water for human needs in developing countries. International Journal of Emerging Technologies and Engineering 3, 75-89.
Winward, G.P., Avery, L.M., Stephenson, T., Jefferson, B., 2008. Chlorine disinfection of grey water for reuse: Effect of organics and particles. Water Research 42(1-2), 483–491. https://doi.org/10.1016/j.watres.2007.07.042.
Similar articles
1.Valery Ivanovich ELFIMOV, Hamid KHAKZAD. Evaluation of flow regime of turbidity currents entering Dez Reservoir using extended shallow water model[J]. Water Science and Engineering, 2014,7(3): 267-276

Copyright by Water Science and Engineering