Water Science and Engineering 2019, 12(3) 213-220 DOI:   https://doi.org/10.1016/j.wse.2019.09.003  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
PDF(4393KB)
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
Acid mine drainage
Iron-oxidizing bacteria
Biooxidation of ferrous iron
Hydraulic retention time
Influent pH
Microbial community analyses
Authors
PubMed

Effect of hydraulic retention time and pH on oxidation of ferrous iron in simulated ferruginous acid mine drainage treatment with inoculation of iron-oxidizing bacteria

Jun-hui Fan a, Xing-yu Liu a,*, Qi-yuan Gu a, Ming-jiang Zhang a, Xue-wu Hu a,b

a GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
b School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China 

Abstract

The effect of hydraulic retention time (HRT) and pH on the biooxidation of ferrous iron during simulated acid mine drainage (AMD) treatment was investigated. The simulated AMD was highly acidic (pH 2.5), rich in iron (about 1700 mg/L) and copper (about 200 mg/L), and contained high concentrations of sulfate (about 4700 mg/L). The biooxidation of ferrous iron was studied in a laboratory-scale upflow packed bed bioreactor (PBR). The HRT was shortened stepwise from 40 h to 20 h, 13 h, and 8 h under the acidic environment at a pH value of 2.2. Then, the influent pH value was changed from 2.2 to 1.2 at a constant suitable HRT. Physiochemical and microbial community structure analyses were performed on water samples and stuffing collected from the bioreactor under different conditions. The results indicate that the efficiency of ferrous iron oxidation gradually decreased with the decrease of HRT, and when the HRT exceeded 13 h, ferrous iron in AMD was almost completely oxidized. In addition, the best efficiency of ferrous iron oxidation was achieved at the influent pH value of 1.8. Microbial community structure analyses show that Leptospirillum is the predominant genus attached in the bioreactor, and low influent pH values are suitable for the growth of Leptospirillum.

Keywords Acid mine drainage   Iron-oxidizing bacteria   Biooxidation of ferrous iron   Hydraulic retention time   Influent pH   Microbial community analyses  
Received 2018-11-26 Revised 2019-05-02 Online: 2019-09-30 
DOI: https://doi.org/10.1016/j.wse.2019.09.003
Fund:

This work was supported by the National Natural Science Foundation of China (Grant No. U1402234); the Guangxi Scientific Research and Technology Development Plan (Grants No. GuikeAB16380287 and GuikeAB17129025); the Public Welfare Fund of the Ministry of Environmental Protection of China (Grant No. 201509049); the Program of International S & T Cooperation (Grant No. 2016YFE0130700); and the Fund of the General Research Institute for Nonferrous Metal (Grants No. 53321 and 53348).

Corresponding Authors: Xing-yu Liu
Email: wellwoodliu@163.com
About author:

References:

Ayala-Parra, P., Sierra-Alvarez, R., Field, J.A., 2016. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron. Journal of Hazardous Materials 308, 97-105. https://doi.org/10.1016/j.jhazmat.2016.01.029.

Chen, M., Lu, G., Guo, C., Yang, C., Wu, J., Huang, W., Yee, N., Dang, Z., 2015. Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China. Chemosphere 119, 734-743. https://doi.org/10.1016/j.chemosphere.2014.07.094.

Gahan, C.S., Sundkvist, J.E., Dopson, M., Sandstrom, A., 2010. Effect of chloride on ferrous iron oxidation by a Leptospirillum ferriphilum-dominated chemostat culture. Biotechnology and Bioengineering 106(3), 422-431. https://doi.org/10.1002/bit.22709.

Gan, M., Li, M.M., Zeng, J., Liu, X.X., Zhu, J.Y., Hu, Y.H., Qiu, G.Z. 2017. Acidithiobacillus ferrooxidans enhanced heavy metals immobilization efficiency in acidic aqueous system through bio-mediated coprecipitation. Transactions of Nonferrous Metals Society of China 27(5), 1156-1164. https://doi.org/10.1016/S1003-6326(17)60135-3.

Hedrich, S., Johnson, D.B., 2012. A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters. Bioresource Technology 106, 44-49. https://doi.org/10.1016/j.biortech.2011.11.130.

Johnson, D.B., Hallberg, K.B., 2005. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system. Science of Total Environment 338(1-2), 81-93. https://doi.org/10.1016/j.scitotenv.2004.09.008.

Jones, R.M., Johnson, D.B., 2016. Iron kinetics and evolution of microbial populations in low-pH, ferrous iron-oxidizing bioreactors. Environ. Sci. Technol. 50(15), 8239-8245. https://doi.org/10.1021/acs.est.6b02141.

Kaksonen, A.H., Puhakka, J.A., 2007. Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Engineering in Life Sciences 7(6), 541-564. https://doi.org/10.1002/elsc.200720216.

Liu, Z., Li, L., Li, Z., Tian, X., 2018. Removal of sulfate and heavy metals by sulfate-reducing bacteria in an expanded granular sludge bed reactor. Environ. Technol. 39(14), 1814-1822. https://doi.org/10.1080/09593330.2017.1340347.

Long, Z.E., Huang, Y.H., Cai, Z.L., Cong, W., Ouyang, F., 2004. Kinetics of continuous ferrous ion oxidation by Acidithiobacillus ferrooxidans immobilized in poly(vinyl alcohol) cryogel carriers. Hydrometallurgy 74(3-4), 181-187. https://doi.org/10.1016/j.hydromet.2004.03.006.

Macias, F., Caraballo, M.A., Nieto, J.M., Rotting, T.S., Ayora, C., 2012. Natural pretreatment and passive remediation of highly polluted acid mine drainage. J. Environ. Manage. 104, 93-100. https://doi.org/10.1016/j.jenvman.2012.03.027.

Masindi, V., Osman, M.S., Abu-Mahfouz, A.M., 2017. Integrated treatment of acid mine drainage using BOF slag, lime/soda ash and reverse osmosis (RO): Implication for the production of drinking water. Desalination 424, 45-52. https://doi.org/10.1016/j.desal.2017.10.002.

Murad, E., Rojík, P., 2003. Iron-rich precipitates in a mine drainage environment: Influence of pH on mineralogy. American Mineralogist, 88(11-12), 1915-1918. https://doi.org/10.2138/am-2003-11-1234.

Neculita, C.M., Zagury, G.J., Bussiere, B., 2007. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: Critical review and research needs. J. Environ. Qual. 36(1), 1-16. https://doi.org/10.2134/jeq2006.0066.

Nyquist, J., Greger, M., 2009. A field study of constructed wetlands for preventing and treating acid mine drainage. Ecological Engineering 35(5), 630-642. https://doi.org/10.1016/j.ecoleng.2008.10.018.

Pierre Louis, A.M., Yu, H., Shumlas, S.L., Van Aken, B., Schoonen, M.A., Strongin, D.R., 2015. Effect of phospholipid on pyrite oxidation and microbial communities under simulated acid mine drainage (AMD) conditions. Environ. Sci. Technol. 49(13), 7701-7708. https://doi.org/10.1021/es505374g.

Plante, B., Bussière, B., Benzaazoua, M., 2014. Lab to field scale effects on contaminated neutral drainage prediction from the Tio mine waste rocks. Journal of Geochemical Exploration 137, 37-47. https://doi.org/10.1016/j.gexplo.2013.11.004.

Vasquez, Y., Escobar, M.C., Saenz, J.S., Quiceno-Vallejo, M.F., Neculita, C.M., Arbeli, Z., Roldan, F., 2018. Effect of hydraulic retention time on microbial community in biochemical passive reactors during treatment of acid mine drainage. Bioresour. Technol. 247, 624-632. https://doi.org/10.1016/j.biortech.2017.09.144.

Weber, K.A., Achenbach, L.A., Coates, J.D., 2006. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nat. Rev. Microbiol. 4(10), 752-764. https://doi.org/10.1038/nrmicro1490.

Zhou, H., Sheng, Y., Zhao, X., Gross, M., Wen, Z., 2018. Treatment of acidic sulfate-containing wastewater using revolving algae biofilm reactors: Sulfur removal performance and microbial community characterization. Bioresour. Technol. 264, 24-34. https://doi.org/10.1016/j.biortech.2018.05.051.

 

Similar articles

Copyright by Water Science and Engineering