Water Science and Engineering 2019, 12(3) 244-252 DOI:   https://doi.org/10.1016/j.wse.2019.09.001  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Air-core vortices
Analytical model
Velocity distribution
Spiral streamlines
Free surface profile   

A 3D analytical model for vortex velocity field based on spiral streamline pattern

Maryam Azarpira, Amir Reza Zarrati *

Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran 15914, Iran


Vortices that develop over intakes are a hazardous hydraulic phenomenon. In this study, a 3D model was developed to study the flow field in air-core vortices. This model is based on the spiral pattern of streamlines and the analytical solution of the momentum and continuity equations for deriving the three components of velocity. The model provides equations for free surface profiles and 3D patterns of the streamlines. Moreover, a new relationship was suggested for calculating effective viscosity and its distribution across the vortex flow field. The performance of the proposed analytical model was compared with existing experimental data and the results of previous analytical models. The outcomes indicated that the proposed model could predict characteristics of the vortex flow with good accuracy.

Keywords Air-core vortices   Analytical model   Velocity distribution   Spiral streamlines   Free surface profile     
Received 2018-03-09 Revised 2019-06-11 Online:  
DOI: https://doi.org/10.1016/j.wse.2019.09.001

This work was supported by the Iran National Science Foundation (INSF, Grant No. 97008045).

Corresponding Authors: Amir Reza Zarrati
Email: Zarrati@aut.ac.ir
About author:


Aboelkassem, Y., 2003. On the Decay of Strong Concentrated Columnar Vortices. Ph. D. Dissertation. Concordia University, Montreal.
Andersen, A., Bohr, T., Stenum, B., Rasmussen, J.J., Lautrup, B., 2006. The bathtub vortex in a rotating container. J. Fluid Mech. 556, 121–146. https://doi.org/10.1017/S0022112006009463.
Anwar, H.O., Amimilett, M.B., 1980. Vortices at vertically inverted intake. J. Hydraul. Res. 18(2), 123–134. https://doi.org/10.1080/00221688009499556.
Azarpira, M., Rahmati, R., Zarrati, A.R., 2016. Investigation of the vortex velocity field with different air core depth on the vertical intake. In: Proceedings of the 15th Iranian Hydraulics Conference. Imam Khomeini International University, Qazvin (In Persian).
Bhagwat, M.J., Leishman, J.G., 2002. Generalized viscous vortex model for application to free-vortex wake and aeroacoustic calculations. In: Proceedings of the 58th Annual Forum and Technology Display of the American Helicopter Society International, Montreal.
Chen, Y., Wu, C., Ye, M., Ju, X., 2007. Hydraulic characteristics of vertical vortex at hydraulic intakes. J. Hydrodyn. Ser. B 19(2), 143–149. https://doi.org/10.1016/S1001-6058(07)60040-7.
Constantinescu, G.S., Patel, V.C., 2000. Role of turbulence model in prediction of pump-bay vortices. J. Hydraul. Eng. 126(5), 387–391. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:5(387).
Daggett, L.L., Keulegan, G.H., 1974. Similitude conditions in free-surface vortex formations. Journal of the Hydraulics Division, 170(11), 1565–1580.
Einstein, H.A., Li, H., 1951. Steady vortex flow in a real fluid. In: Proceedings of 1951 Heat Transfer and Fluid Mechanics Institute. Stanford University, Stanford, pp. 33–43.
Gulliver, J.S., 1988. Discussion of “Free-Surface Air Core Vortex” by A. Jacob Odgaard (July, 1986, Vol. 112, No. 7). J. Hydraul. Eng. 114(4), 447–449. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:4(447).
Guyot, G., Maaloul, H., Archer, A., 2014. A vortex modeling with 3D CFD. In: Gourbesville, P., Cunge, J., Caignaert, G., eds., Advances in Hydroinformatics. Springer Singapore, Singapore, pp. 433–444. https://doi.org/10.1007/978-981-4451-42-0_35.
Hecker, G.A., 1987. Fundamentals of vortex intake flow. In: Knauss, J., ed., IAHR Hydraulic Structures Design Manual 1: Swirling Flow Problems at Intakes. Balkema, Rotterdam.
Hite Jr., J.E., Mih, W.C., 1994. Velocity of air-core vortices at hydraulic intakes. J. Hydraul. Eng. 120(3), 284–297. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:3(284).
Jain, A., Ranga Raju, K.G., Garde, R.J., 1978. Vortex formation at vertical pipe intakes. J. Hydraul. Div. 104(10), 1429–1445.
Julien, P.Y., 1986. Concentration of very fine silts in a steady vortex. J. Hydraul. Res. 24(4), 255–264. https://doi.org/10.1080/00221688609499304.
Li, H.F., Chen, H.X., Ma, Z., Zhou, Y., 2008. Experimental and numerical investigation of free surface vortex. J. Hydrodyn. 20(4), 485–491. https://doi.org/10.1016/S1001-6058(08)60084-0.
Lucino, C., Duró, G., Liscia, S., 2010. Vortex detection in pump sumps by means of CFD. In: Proceedings of XXIV Latin American Congress on Hydraulics. IAHR-AIIH, Punta Del Este.
Möller, G., Detert, M., Boes, R.M., 2015. Vortex-induced air entrainment rates at intakes. J. Hydraul. Eng. 141(11), 1–8. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001036.
Naderi, V., Gaskin, S., 2018. A 3D study of an intake air-core vortex structure using PIV & flow visualization. In: Bung, D., Tullis, B., eds., Proceedings of 7th IAHR International Symposium on Hydraulic Structures. IAHR, Aachen.
Newman, B.G., 1959. Flow in a viscous trailing vortex. Aeronaut. Q. 10(2), 149–162.
Odgaard, A.J., 1986. Free-surface air core vortex. J. Hydraul. Eng. 112(7), 610–620. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:7(610).
Okamura, T., Kamemoto, K., Matsui, J., 2007. CFD prediction and model experiment on suction vortices in pump sump. In: Proceedings of the 9th Asian International Conference on Fluid Machinery. Jeju, pp. 1–10.
Quick, M.C., 1962. Scale relationships between geometrically similar free spiral vortices. Civil Eng. Public Works Rev. 57(10), 1319–1320.
Rajendran, V.P., Constantinescu, S.G., Patel, V.C., 1999. Experimental validation of numerical model pump-intake bays. J. Hydraul. Eng. 125(11), 1119–1125. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:11(1119).
Rajendran, V.P., Patel, V.C., 2000. Measurement of vortices in model pump-intake bay by PIV. J. Hydraul. Eng. 126(5), 322–334. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:5(322)
Rankine, W.J.M., 1858. A Manual of Applied Mechanics. Charles Griffin, London.
Rouse, H., 1963. On the role of eddies in fluid motion. American Scientist, 51(3), 285–314.
Sarkardeh, H., Zarrati, A.R., Roshan, R., 2010. Effect of intake head wall and trash rack on vortices. J. Hydraul. Res. 48(1), 108–112. https://doi.org/10.1080/00221680903565952.
Scully, M.P., 1975. Computation of Helicopter Rotor Wake Geometry and Its Influence on Rotor Harmonic Airloads. Ph. D. Dissertation. Massachusetts Institute of Technology, Cambridge.
Spurk, J.H., Aksel, N., 2008. Fluid Mechanics. Springer, Berlin.
Suerich-Gulick, F., Gaskin, S., Villeneuve, M., Holder, G., Parkinson, E., 2006. Experimental and numerical analysis of free surface vortices at a hydropower intake. In: Proceedings of the 7th International Conference in Hydroscience and Engineering.  Philadelphia, pp. 1–11.
Suerich-Gulick, F., Gaskin, S., Villeneuve, M., Parkinson, E., 2014. Free surface intake vortices: Theoretical model and measurements. J. Hydraul. Res. 52(4), 502–512. https://doi.org/10.1080/00221686.2014.896425.
Sun, H.L., Liu, Y.K., 2015. Theoretical and experimental study on the vortex at hydraulic intakes. J. Hydraul. Res. 53(6), 787–796. https://doi.org/10.1080/00221686.2015.1076533.
Vatistas, G.H., Kozel, V., Mih, W.C., 1991. A simpler model for concentrated vortices. Exp. Fluids 11(1), 73–76. https://doi.org/10.1007/BF00198434.
Vischer, D.L., Hager, W.H., Cischer, D., 1998. Intake structures. In: Dam Hydraulics. John Wiley Sons, Chichester, pp. 215–232.

Similar articles

Copyright by Water Science and Engineering