Water Science and Engineering 2019, 12(4) 293-297 DOI:   https://doi.org/10.1016/j.wse.2019.12.005  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
PDF(358KB)
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
Sunlight irradiation
Photodegradation
Contaminants
Stabilisation ponds
Solar water treatment
Authors
PubMed

Models to predict sunlight-induced photodegradation rates of contaminants in wastewater stabilisation ponds and clarifiers

Xi-Zhi Niu

Department of Chemical and Environmental Engineering and Arizona Laboratory for Emerging Contaminants, University of Arizona, Tucson AZ 85721, USA

Abstract

Two kinetic models were established for conservative estimates of photodegradation rates of contaminants under sunlight irradiation, in particular for wastewater stabilisation ponds and clarifiers in conventional wastewater treatment plants. These two models were designated for (1) contaminants with high photolytic rates or high photolytic quantum yields, whose photodegradation is unlikely to be enhanced by aquatic photosensitisers; and (2) contaminants withstanding direct photolysis in sunlit waters but subjected to indirect photolysis. The effortlessly intelligible prediction procedure involves sampling and analysis of real water samples, simulated solar experiments in the laboratory, and transfer of the laboratory results to realist water treatment using the prediction models. Although similar models have been widely used for laboratory studies, this paper provides a preliminary example of translating laboratory results to the photochemical fate of contaminants in real waters.

Keywords Sunlight irradiation   Photodegradation   Contaminants   Stabilisation ponds   Solar water treatment  
Received 2019-04-01 Revised 2019-09-21 Online: 2019-12-30 
DOI: https://doi.org/10.1016/j.wse.2019.12.005
Fund:
Corresponding Authors: Xi-Zhi Niu
Email: xizhi.niu@kaust.edu.sa
About author:

References:

Afsharnia, M., Kianmehr, M., Biglari, H., Dargahi, A., Karimi, A., 2018. Disinfection of dairy wastewater effluent through solar photocatalysis processes. Water Science and Engineering, 11(3), 214-219. https://doi.org/10.1016/j.wse.2018.10.001.

Boreen, A.L., Arnold, W.A., McNeill, K., 2003. Photodegradation of pharmaceuticals in the aquatic environment: A review. Aquatic Sciences, 65(4), 320-341. https://doi.org/10.1007/s00027-003-0672-7.

Canonica, S., Meunier, L., von Gunten, U., 2008. Phototransformation of selected pharmaceuticals during UV treatment of drinking water. Water Research, 42(1-2), 121-128. https://doi.org/10.1016/j.watres.2007.07.026.

Ge, P., Yu, H., Chen, J.W., Qu, J.P., Luo, Y., 2018. Photolysis mechanism of sulfonamide moiety in five-membered sulfonamides: A DFT study. Chemosphere, 197, 569-575. https://doi.org/10.1016/j.chemosphere.2018.01.041.

Glady-Croue, J., Niu, X.Z., Ramsay, J.P., Watkin, E., Murphy, R.J.T., Croue, J.-P., 2018. Survival of antibiotic resistant bacteria following artificial solar radiation of secondary wastewater effluent. Science of The Total Environment, 626, 1005-1011. https://doi.org/10.1016/j.scitotenv.2018.01.101.

Gruchlik, Y., Linge, K., Joll, C., 2018. Removal of organic micropollutants in waste stabilisation ponds: A review. Journal of Environmental Management, 206, 202-214. https://doi.org/10.1016/j.jenvman.2017.10.020.

Gschwend, P.M., 2016. Environmental Organic Chemistry. John Wiley & Sons.

Jacobs, L.E., Fimmen, R.L., Chin, Y.-P., Mash, H.E., Weavers, L.K., 2011. Fulvic acid mediated photolysis of ibuprofen in water. Water Research, 45(15), 4449-4458. https://doi.org/10.1016/j.watres.2011.05.041.

Kohn, T., Nelson, K.L., 2007. Sunlight-mediated inactivation of MS2 coliphage via exogenous singlet oxygen produced by sensitizers in natural waters. Environmental Science & Technology, 41(1), 192-197. https://doi.org/10.1021/es061716i.

Latch, D.E., Stender, B.L., Packer, J.L., Arnold, W.A., McNeill, K., 2003. Photochemical fate of pharmaceuticals in the environment: Cimetidine and ranitidine. Environmental Science & Technology, 37(15), 3342-3350. https://doi.org/10.1021/es0340782.

Lee, E., Glover, C.M., Rosario-Ortiz, F.L., 2013. Photochemical formation of hydroxyl radical from effluent organic matter: Role of composition. Environmental Science & Technology, 47(21), 12073-12080. https://doi.org/10.1021/es402491t.

Leifer, A., 1988. The Kinetics of Environmental Aquatic Photochemistry: Theory and Practice. American Chemical Society.

Liang, C., Zhao, H., Deng, M., Quan, X., Chen, S., Wang, H., 2015. Impact of dissolved organic matter on the photolysis of the ionizable antibiotic norfloxacin. Journal of Environmental Sciences, 27, 115-123. https://doi.org/10.1016/j.jes.2014.08.015.

Niu, X.Z., Liu, C., Gutierrez, L., Croué, J.-P., 2014. Photobleaching-induced changes in photosensitizing properties of dissolved organic matter. Water Research, 66, 140-148. https://doi.org/10.1016/j.watres.2014.08.017.

Niu, X.Z., Busetti, F., Langsa, M., Croué, J.-P., 2016. Roles of singlet oxygen and dissolved organic matter in self-sensitized photo-oxidation of antibiotic norfloxacin under sunlight irradiation. Water Research, 106, 214-222. https://doi.org/10.1016/j.watres.2016.10.002.

Niu, X.Z., Glady-Croue, J., Croue, J.P., 2017. Photodegradation of sulfathiazole under simulated sunlight: Kinetics, photo-induced structural rearrangement, and antimicrobial activities of photoproducts. Water Research, 124, 576-583. https://doi.org/10.1016/j.watres.2017.08.019.

Niu, X.Z., Moore, E.G., Croue, J.-P., 2018. Excited triplet state interactions of fluoroquinolone norfloxacin with natural organic matter: A laser spectroscopy study. Environmental Science & Technology, 52(18), 10426-10432. https://doi.org/10.1021/acs.est.8b02835.

Niu, X.Z., Croué, J.-P., 2019. Photochemical production of hydroxyl radical from algal organic matter. Water Research, 161, 11-16. https://doi.org/10.1016/j.watres.2019.05.089.

Niu, X.Z., Harir, M., Schmitt-Kopplin, P., Croué, J.-P., 2019. Sunlight-induced phototransformation of transphilic and hydrophobic fractions of Suwannee River dissolved organic matter. Science of The Total Environment, 694, 133737. https://doi.org/10.1016/j.scitotenv.2019.133737.

Remucal, C.K., McNeill, K., 2011. Photosensitized amino acid degradation in the presence of riboflavin and its derivatives. Environmental Science & Technology, 45(12), 5230-5237. https://doi.org/10.1021/es200411a.

Romero-Maraccini, O.C., Sadik, N.J., Rosado-Lausell, S.L., Pugh, C.R., Niu, X.Z., Croue, J.-P., Nguyen, T.H., 2013. Sunlight-induced inactivation of human Wa and porcine OSU rotaviruses in the presence of exogenous photosensitizers. Environmental Science & Technology, 47(19), 11004-11012. https://doi.org/10.1021/es402285u.

Sharpless, C.M., Aeschbacher, M., Page, S.E., Wenk, J., Sander, M., McNeill, K., 2014. Photooxidation-induced changes in optical, electrochemical, and photochemical properties of humic substances. Environmental Science & Technology, 48(5), 2688-2696. https://doi.org/10.1021/es403925g.

Vaughan, P.P., Blough, N.V., 1998. Photochemical formation of hydroxyl radical by constituents of natural waters. Environmental Science & Technology, 32(19), 2947-2953. https://doi.org/10.1021/es9710417.

Wenk, J., Nguyen, M.T., Nelson, K.L., 2019. Natural photosensitizers in constructed unit process wetlands: Photochemical characterization and inactivation of pathogen indicator organisms. Environmental Science & Technology, 53(13), 7724-7735. https://doi.org/10.1021/acs.est.9b01180.

Xu, H., Cooper, W. J., Jung, J., Song, W., 2011. Photosensitized degradation of amoxicillin in natural organic matter isolate solutions. Water Research, 45(2), 632-638. https://doi.org/10.1016/j.watres.2010.08.024.

 

Similar articles

Copyright by Water Science and Engineering