Water Science and Engineering 2019, 12(4) 298-306 DOI:   https://doi.org/10.1016/j.wse.2019.12.006  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
PDF(1886KB)
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
Nickel ion
Adsorption
MCFs
Kinetics
Thermodynamics
Hydrothermal method
Wastewater treatment
Authors
PubMed

Nano mesocellular foam silica (MCFs): An effective adsorbent for removing Ni2+ from aqueous solution

Xiao-dong Li a,*, Qing-zhou Zhai b

a Department of Basic Science, Jilin Jianzhu University, Changchun 130118, China
b Research Center for Nanotechnology, Changchun University of Science and Technology, Changchun 130022, China

Abstract

Nano mesocellular foam silica (MCFs) was synthesized through the hydrothermal method in this study. Powder X-ray diffraction and scanning electron microscopy were used to characterize the MCFs sample. The sample presented spherical particles and regular morphology. The results of transmission electron microscopy showed that synthesized MCFs has a three-dimensional honeycomb pore structure, which aids in the adsorption of nickel ion (Ni2+). The results of low-temperature nitrogen gas adsorption-desorption showed that the pore diameter of the synthesized MCFs was 19.6 nm. The impacts of pH, temperature, amount of adsorbent, initial concentration of Ni2+, and contact time on the adsorption effect of Ni2+ by MCFs were studied. Under the optimized adsorption conditions, the adsorption rate reached 96.10% and the adsorption capacity was 7.69 mg/g. It has been determined through the study of kinetics and adsorption isotherms that the adsorption of Ni2+ by MCFs follows the pattern of the pseudo-second-order kinetic model, simultaneously belonging to the Freundlich adsorption type. The thermodynamic results of adsorption showed that, when the temperature is between 25 and 45 ℃, the adsorption is a spontaneous exothermic reaction.

Keywords Nickel ion   Adsorption   MCFs   Kinetics   Thermodynamics   Hydrothermal method   Wastewater treatment  
Received 2019-02-10 Revised 2019-09-21 Online: 2019-12-30 
DOI: https://doi.org/10.1016/j.wse.2019.12.006
Fund:

This work was supported by the Natural Science Foundation of the Department of Science and Technology of Jilin Province, China (Grants No. 20180101180JC, 222180102051, and KYC-JC-XM-2018-051).

Corresponding Authors: Xiao-dong Li
Email: rcnrcn1@163.com
About author:

References:

Ahmed, A.-M. M., Ali, A.E., Ghazy, A.H., 2019. Adsorption separation of nickel from wastewater by using olive stones. Advanced Journal of Chemistry, Section A, 2(1), 79-93. https://doi.org/10.33945/SAMI/AJCA.

Ballesteros, R., Perez-Quintanilla, D., Fajardo, M., Hierro, I.D, Sierra, I., 2010. Adsorption of heavy metals by pirymidine-derivated mesoporous hybrid material. Journal of Porous Materials, 17(4), 417-424. https://doi.org/10.1007/s10934-009-9318-z.

Barrett, E.P., Joyner, L.G., Halenda, P.P. 1951. The determination of pore volume and area distributions in porous substances: I. Computation from nitrogen isotherms. Journal of the American Chemical Society, 73(1), 373-380. 

Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, T.W., 1992. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. https://doi.org/10.1021/ja00053a020.

Broekhoff, J.C.P., de Boer, J.H., 1968a. Studies on pore systems in catalysts: XI. Pore distribution calculations from the adsorption branch of a nitrogen adsorption isotherm in the case of “ink-bottle” type pores. Journal of Catalysis, 10(2), 153-165. https://doi.org/10.1016/0021-9517(68)90168-1.

Broekhoff, J.C.P., de Boer, J.H., 1968b. Studies on pore systems in catalysts: XII. Pore distributions from the desorption branch of a nitrogen sorption isotherm in the case of cylindrical pores A. An analysis of the capillary evaporation process. Journal of Catalysis. 10(4), 391-400. https://doi.org/10.1016/0021-9517(68)90152-8.

Brunauer, S., Emmett, P.H., Teller, E., 1938. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309-319. https://doi.org/10.1021/ja01269a023.

Che, S., Liu, Z., Ohsuna, T., Akamoto, K.S., Terasaki, O., Tatsumi, T., 2004. Synthesis and characterization of chiral mesoporous silica. Nature, 429, 281-284. https://doi.org/10.1038/nature02529.

Chen, W., Ma, L., Liu, H.C., 2017. Adsorption capacity of magnetic-modified sepiolite for humic acid in source water. Journal of Hohai University (Natural Sciences), 45(2), 109-115 (in Chinese). https://doi.org/10.3876/j.issn.1000-1980.2017.02.003.

Clifford, D., Subramonian, S., Sorg, T., 1986. Removing dissolved inorganic contaminants from water. Environmental Science Technology. 20(11), 1072-1080. https://doi.org/10.1021/es00152a002.

Ewecharoen, A., Thiravetyan, P., Nakbanpote, W., 2008. Comparison of nickel adsorption from electroplating rinse water by coir pith and modified coir pith. Chemical Engineering Journal, 137(2),181-188. https://doi.org/10.1016/j.cej.2007.04.007.

Fang, Z.D., Zhang, K., Liu, J., Fan, J.Y., Zhao, Z.W., 2017. Fenton-like oxidation of azo dye in aqueous solution using magnetic Fe3O4-MnO2 nanocomposites as catalysts. Water Science and Engineering, 10(4), 326-333. https://doi.org/10.1016/j.wse.2017.10.005.

Freundlich, H., 1906. Over the adsorption in solution. Journal of Physical Chemistry, 57, 385-387.

Geng, A.F., Zhai, Q.Z., 2014. Determination of nickel in tea with arsenazo-III by spectrophotometry. Journal of Chemical and Pharmaceutical Research, 6(1), 521-523. https://doi.org/10.1007/bf02827998.

Gerel, O., Ozcan, A., Ozcan, A.S., Gercel, H.F., 2007. Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida, by H2SO4 activation and its adsorption behavior in aqueous solutions. Applied Surface Science, 253(11), 4843-4852. https://doi.org/10.1016/j.apsusc.2006.10.053.

Guo, Y.Q., Song, L., 2010. Progress in heavy metal wastewater pollution and its treatment technology. Guangzhou Chemical Industry, 38(4), 18-20 (in Chinese). https://doi.org/10.3969/j.issn.1000-6613.2013.11.038.

Gupta, S., Sharma, S.K., Kumar, A., 2019. Biosorption of Ni(II) ions from aqueous solution using modified Aloe barbadensis miller leaf powder. Water Science and Engineering, 12(1), 27-36. https://doi.org/10.1016/j.wse.2019.04.003.

Hasar, H., 2003. Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from almond husk. Journal of Hazardous Materials, 97(1-3), 49-57. https://doi.org/10.1016/s0304-3894(02)00237-6.

Ho, Y.S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451-465. https://doi.org/10.1016/s0032-9592(98)00112-5.

Khan, M.A., Ngabura, M., Choong, T.S., Masood, H., Chuah, L.A., 2011. Biosorption and desorption of nickel on oil cake: Batch and column studies. Bioresource Technology, 103(1), 35-42. https://doi.org/10.1016/j.biortech.2011.09.065.

Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S., 1992. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 359, 710-712. https://doi.org/10.1038/359710a0.

Lagergren, S., 1898. About the theory of the so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakadmius Hadndlingar, 24(1), 1-39.

Langmuir, I., 1918. The adsorption of gases on plain surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361-1403. https://doi.org/10.1021/ja02242a004.

Li, Y., Ni, L.F., Guo, Y.F., 2017. Floating catalyst based on polyurethane foams modified with TiO2/graphene-montmorillonite for visible-light degradation of 17α-ethinylestradiol. Journal of Hohai University (Natural Sciences), 45(2), 116-121 (in Chinese). https://doi.org/10.3876/j.issn.1000-1980.2017.02.004.

Lin, L.C., Thirumavalavan, M., Lee, J.-F. 2014. Facile synthesis of thiol-functionalized mesoporous silica-their role for heavy metal removal efficiency. Clean-Soil, Air, Water, 42, 1-11. https://doi.org/10.1002/clen.201400231.

Nityanandi, D., Subbhuraam, C.V., Kadirvelu, K., 2006. Adsorption of nickel from aqueous solution by coir based adsorbent, puresorbe. Environmental Technology, 27(1), 15-24. https://doi.org/10.1080/09593332708618621.

Pei, X.W., 2001. Research on the relationship between trace elements and coronary heart disease. Journal of Public Health, 17(4), 302-304. https://doi.org/10.1007/BF02784438.

Schmidt, W.P., Lukens, W.W., Zhao, D.Y., Yang, P., Chmelka, B.F., Stucky, G.D., 1999. Mesocellular siliceous foams with uniformly sized cells and windows. Journal of the American Chemical Society, 121(1), 254-255. https://doi.org/10.1021/ja983218i.

Walcarius, A., Mercier, L., 2010. Mesoporous organosilica adsorbents: Nanoengineered materials for removal of organic and inorganic pollutants. Journal of Materials Chemistry, 20, 4478-4511.

Wei, Y.H., Huang, Q.C., Su, X.F., 2008. Effects of nickel on human health and its mechanism. Journal of Environmental Management. 33(9), 45-48. https://doi.org/10.1039/b924316j.

Wongsakulphasatch, S., Kiatkittipong, W., Saiswat, J., Oonkhanond, B., Striolo, A., Assabumrungrat, S., 2014. The adsorption aspect of Cu2+ and Zn2+ on MCM-41 and SDS-modified MCM-41. Inorganic Chemistry Communications, 46, 301-304. https://doi.org/10.1016/j.inoche.2014.06.029.

Zenasni, M.A., Benfarhi, S., Merlin, A., Molina, S., George, B., Meroufel1, B., 2013. Adsorption of nickel in aqueous solution onto natural maghnite. Materials Sciences and Applications, 4(2), 153-161. https://doi.org/10.4236/msa.2013.42018.

Zhai, Q.Z., 2013. Preparation and controlled release of mesoporous MCM-41/propranolol hydrochloride composite drug. Journal of Microencapsulation, 30(2), 173-180. https://doi.org/10.3109/02652048.2012.714409.

Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredricksom, G.H., Chmelka, B.F., Stucky, G.D., 1998. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 279(5350), 548-552. https://doi.org/10.1126/science.279.5350.548.

Similar articles
1.Yang XIAO, Xiao-lian ZHU, Hao-ke CHENG, Kai-jie LI, Qi LU, Dong-fang LIANG.Characteristics of phosphorus adsorption by sediment mineral matrices with different particle sizes[J]. Water Science and Engineering, 2013,6(3): 262-271
2.Min-min WANG, Li WANG.Synthesis and characterization of carboxymethyl cellulose/organic montmorillonite nanocomposites and  its adsorption behavior for Congo Red dye[J]. Water Science and Engineering, 2013,6(3): 272-282
3.Xin-lei ZHAO, Liang ZHU, Shi-jie BAI, Ming ZHOU, Jing QIAN,Wei WU.Performance of a double-layer BAF using zeolite and ceramic as media under ammonium shock load condition[J]. Water Science and Engineering, 2014,7(1): 81-89
4.Riffat Shaheed, Wan Hanna Melini Wan Mohtar, Ahmed El-Shafie.Ensuring water security by utilizing roof-harvested rainwater and lake water treated with a low-cost integrated adsorption-filtration system[J]. Water Science and Engineering, 2017,10(2): 115-124
5.Zhi-hong Zhang, Jia-pei Zhang, Zhan-ying Ju, Min Zhu.A one-dimensional transport model for multi-component solute in saturated soil[J]. Water Science and Engineering, 2018,11(3): 236-242

Copyright by Water Science and Engineering