Water Science and Engineering 2019, 12(4) 307-318 DOI:   https://doi.org/10.1016/j.wse.2019.12.003  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Reservoir scheduling
Optimization method
Constraint handling
Shuffled complex evolution
Stochastic ranking

Shuffled complex evolution coupled with stochastic ranking for      reservoir scheduling problems

Jing-qiao Mao a, *, Ming-ming Tian a, Teng-fei Hu a, Kang Ji b, Ling-quan Dai c, Hui-chao Dai a

a College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
b Ningbo Hongtai Water Conservancy Information Technology Co., Ltd., Ningbo 315040, China
c College of Hydraulic and Environmental Engineering, Three Gorges University, Yichang 443002, China


This paper introduces an optimization method (SCE-SR) that combines shuffled complex evolution (SCE) and stochastic ranking (SR) to solve constrained reservoir scheduling problems, ranking individuals with both objectives and constrains considered. A specialized strategy is used in the evolution process to ensure that the optimal results are feasible individuals. This method is suitable for handling multiple conflicting constraints, and is easy to implement, requiring little parameter tuning. The search properties of the method are ensured through the combination of deterministic and probabilistic approaches. The proposed SCE-SR was tested against hydropower scheduling problems of a single reservoir and a multi-reservoir system, and its performance is compared with that of two classical methods (the dynamic programming and genetic algorithm). The results show that the SCE-SR method is an effective and efficient method for optimizing hydropower generation and locating feasible regions quickly, with sufficient global convergence properties and robustness. The operation schedules obtained satisfy the basic scheduling requirements of reservoirs.

Keywords Reservoir scheduling   Optimization method   Constraint handling   Shuffled complex evolution   Stochastic ranking  
Received 2018-11-25 Revised 2019-09-26 Online: 2019-12-30 
DOI: https://doi.org/10.1016/j.wse.2019.12.003

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFC0401702), the Fundamental Research Funds for the Central Universities (Grant No. 2018B11214), and the National Natural Science Foundation of China (Grants No. 51379059 and 51579002).

Corresponding Authors: Jing-qiao Mao
Email: maojq@hhu.edu.cn
About author:


Buras, N., 1966. Dynamic programming in water resources development. Advances in Hydroscience 3, 367-412. https://doi.org/10.1016/B978-0-12-021803-5.50014-1.

Cai, Z.X., Wang, Y., 2006. A multiobjective optimization-based evolutionary algorithm for constrained optimization. IEEE Transactions on Evolutionary Computation 10(6), 658-675. https://doi.org/10.1109/Tevc.2006.872344.

Castelletti, A., Pianosi, F., Soncini-Sessa, R., 2008. Water reservoir control under economic, social and environmental constraints. Automatica 44(6), 1595-1607. https://doi.org/10.1016/j.automatica.2008.03.003.

Chang, L.C., Chang, F.J., 2001. Intelligent control for modelling of real-time reservoir operation. Hydrological Processes 15(9), 1621-1634. https://doi.org/10.1002/hyp.226.

Coello, C.A.C., Montes, E.M., 2002. Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Advanced Engineering Informatics 16(3), 193-203. https://doi.org/10.1016/S1474-0346(02)00011-3.

Deb, K., 2000. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 186(2-4), 311-338. https://doi.org/10.1016/S0045-7825(99)00389-8.

Duan, Q.Y., 1991. A Global Optimization Strategy for Efficient and Effective Calibration of Hydrologic Models. Ph. D. Dissertation. The University of Arizona, Tucson.

Duan, Q.Y., Sorooshian, S., Gupta, V.K., 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research 28(4), 1015-1031. https://doi.org/10.1029/91WR02985.

Duan, Q.Y., Gupta, V.K., Sorooshian, S., 1993. Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications 76(3), 501-521. https://doi.org/10.1007/BF00939380.

Duan, Q.Y., Sorooshian, S., Gupta, V.K., 1994. Optimal use of the SCE-UA global optimization method for calibrating watershed models. Journal of Hydrology 158(3-4), 265-284. https://doi.org/10.1016/0022-1694(94)90057-4.

Hu, T.F., Mao, J.Q., Tian, M.M., Dai, H.C., Rong, G.W., 2018. New constraint-handling technique for evolutionary optimization of reservoir operation. Journal of Water Resources Planning and Management 144(3), https://doi.org/10.1061/(ASCE)WR.1943-5452.0000891.

Khatibi, R.H., 2003. Hydraulic classification of irrigation supply systems. Journal of Hydraulic Research 41(1), 15-26. https://doi.org/10.1080/00221680309499925.

Labadie, J.W., 2004. Optimal operation of multireservoir systems: State-of-the-art review. Journal of Water Resources Planning and Management 130(2), 93-111. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:2(93).

Li, F.F., Wei, J.H., Fu, X.D., Wan, X.Y., 2012. An effective approach to long-term optimal operation of large-scale reservoir systems: Case study of the Three Gorges system. Water Resources Management 26(14), 4073-4090. https://doi.org/10.1007/s11269-012-0131-0.

Li, M.H., Jing, L., Zhu, Y.J., Gao, X.Y., Wang, Q., Kong, J., 2018. Research on the water source identification based on an improved genetic algorithm. Journal of Hohai University (Natural Sciences) 46(5), 402-407 (in Chinese). https://doi.org/10.3876/j.issn.1000-1980.2018.05.005.

Liu, P., Guo, S.L., Xu, X.W., Chen, J.H., 2011. Derivation of aggregation-based joint operating rule curves for cascade hydropower reservoirs. Water Resources Management 25(13), 3177-3200. https://doi.org/10.1007/s11269-011-9851-9.

Liu, Q., Fang, G.H., Sun, H.B., Wu, X.W., 2017. Joint optimization scheduling for water conservancy projects in complex river networks. Water Science and Egineering 10(1), 43-52. https://doi.org/10.1016/j.wse.2017.03.008.

Mao, J.Q., Jiang, D.G., Dai, H.C., 2015. Spatial-temporal hydrodynamic and algal bloom modelling analysis of a reservoir tributary embayment. Journal of Hydro-environment Research 9(2), 200-215. http://doi.org/10.1016/j.jher.2014.09.005.

Mao, J.Q., Zhang, P.P., Dai, L.Q., Dai, H.C., Hu, T.F., 2016. Optimal operation of a multi-reservoir system for environmental water demand of a river-connected lake. Hydrology Research. 47(s1), 206-224. https://doi.org/10.2166/nh.2016.043.

Mezura-Montes, E., Coello, C.A.C., 2005. A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Transactions on Evolutionary Computation 9(1), 1-17. https://doi.org/10.1109/TEVC.2004.836819.

Runarsson, T.P., Yao, X., 2000. Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation 4(3), 284-294. https://doi.org/10.1109/4235.873238.

Simonovic, S.P., 1992. Reservoir systems analysis: Closing gap between theory and practice. Journal of Water Resources Planning and Management 118(3), 262-280. https://doi.org/10.1061/(ASCE)0733-9496(1992)118:3(262).

Tang, Y.H., Luan, C.M., 2007. Application of SCE-UA method in calibrating parameters of Xinanjiang model and TOPMODEL. Journal of China Hydrology 27(6), 33-35 (in Chinese). https://doi.org/10.3969/j.issn.1000-0852.2007.06.008.

Teegavarapu, R.S., Simonovic, S.P., 2000. Short-term operation model for coupled hydropower reservoirs. Journal of Water Resources Planning and Management 126(2), 98-106. https://doi.org/10.1061/(ASCE)0733-9496(2000)126:2(98).

Yan, L.Z., Fu, Q.P., Lu, J., Li, R.B., 2018. Influence of key parameters variation on average annual electricity generation of hydropower plants. Yangtze River 49(13), 44-47 (in Chinese). http://doi.org/10.16232/j.cnki.1001-4179.2018.13.008.

Yeh, W.W.G., 1985. Reservoir management and operations models: A state of the art review. Water Resources Research 21(12), 1797-1818. https://doi.org/10.1029/WR021i012p01797.


Similar articles

Copyright by Water Science and Engineering