Water Science and Engineering 2020, 13(1) 1-13 DOI:    https://doi.org/10.1016/j.wse.2020.03.004  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Tidal inlet and estuary
Morphodynamic modelling
Temporal and spatial scales
Sea level rise
Equilibrium sediment transport

Aggregated morphodynamic modelling of tidal inlets and estuaries

Zheng Bing Wang a, b, c, Ian Townend b, d, *, Marcel Stive a, b

a Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft 2600 GA, the Netherlands
b College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China
c Unit of Marine and Coastal Systems, Deltares, Delft 2600 MH, the Netherlands
d School of Ocean and Earth Sciences, University of Southampton, Southampton SO16 7QF, UK


Aggregation is used to represent the real world in a model at an appropriate level of abstraction. We used the convection-diffusion equation to examine the implications of aggregation progressing from a three-dimensional (3D) spatial description to a model representing a system as a single box that exchanges sediment with the adjacent environment. We highlight how all models depend on some forms of parametric closure, which need to be chosen to suit the scale of aggregation adopted in the model. All such models are therefore aggregated and make use of some empirical relationships to deal with sub-scale processes. One such appropriately aggregated model, the model for the aggregated scale morphological interaction between tidal basin and adjacent coast (ASMITA), is examined in more detail and used to illustrate the insight that this level of aggregation can bring to a problem by considering how tidal inlets and estuaries are impacted by sea level rise.

Keywords Tidal inlet and estuary   Morphodynamic modelling   Aggregation   Temporal and spatial scales   Sea level rise   Equilibrium sediment transport  
Received 2019-09-16 Revised 2020-02-10 Online: 2020-03-30 
DOI: https://doi.org/10.1016/j.wse.2020.03.004
Corresponding Authors: Ian Townend
Email: i.townend@soton.ac.uk
About author:


Carrasco, A.R., Ferreira, Ó., Roelvink, D., 2016. Coastal lagoons and rising sea level: A review. Earth-Science Reviews, 154, 356-368. https://doi.org/10.1016/j.earscirev.2015.11.007.

Cowell, P.J., Stive, M.J.E., Niedoroda, A., de Vriend, H.J., Swift, D., Kaminsky, G.M., Capobianco, M., 2003. The coastal-tract (Part 1): A conceptual approach to aggregated modelling of low-order coastal change. Journal of Coastal Research, 19(4), 812-827.

Dam, G., van der Wegen, M., Labeur, R.J., Roelvink, D., 2016. Modeling centuries of estuarine morphodynamics in the Western Scheldt estuary. Geophysical Research Letters, 43(8), 3839-3847. https://doi.org/10.1002/2015gl066725.

Deltacommissie, 2008. Working Together with Water, Report of Deltacommissie. Deltacommissie, Rotterdam .

Di Silvio, G., 1989. Modelling the morphological evolution of tidal lagoons and their equilibrium configurations. In: Proceedings of the 13th Congress of IAHR. IAHR, pp. C-169-C-175.

Di Silvio, G., Dall'Angelo, C., Bonaldo, D., Fasolato, G., 2010. Long-term model of planimetric and bathymetric evolution of a tidal lagoon. Continental Shelf Research, 30(8), 894-903. https://doi.org/10.1016/j.csr.2009.09.010.

Elias, E.P.L., van der Spek, A.J.F., Wang, Z.B., de Ronde, J.G., 2012. Morphodynamic development and sediment budget of the Dutch Wadden Sea over the last century. Netherlands Journal of Geosciences, 91(3), 293-310. https://doi.org/10.1017/s0016774600000457.

Eysink, W.D., 1990. Morphological response of tidal basins to change. In: Proceedings of the 22nd International Conference on Coastal Engineering. ASCE, Delft, pp. 1948-1961. https://doi.org/10.1061/9780872627765.149..

Eysink, W.D., Biegel, E.J., 1992. Impact of Sea Level Rise on the Morphology of the Wadden Sea in the Scope of Its Ecological Function. ISOS*2 Project, Phase 2, Report H1300. WL|Delft Hydraulics, Delft.

Fokker, P.A., van Leijen, F., Orlic, B., van der Marel, H., Hanssen, R., 2018. Subsidence in the Dutch Wadden Sea. Netherlands Journal of Geosciences, 97(3), 129-181. https://doi.org/10.1017/njg.2018.9.

Galappatti, G., Vreugdenhil, C.B., 1985. A depth integrated model for suspended sediment transport. Journal of Hydraulic Research, 23(4), 359-375. https://doi.org/10.1080/00221688509499345.

Hinkel, J., Nicholls, R.J., Tol, R.S.J., Wang, Z.B., Hamilton, J.M., Boot, G., Vafeidis, A.T., McFadden, L., Ganopolski, A., Klein, R.J.T., 2013. A global analysis of erosion of sandy beaches and sea-level rise: An application of DIVA. Global and Planetary Change, 111, 150-158. https://doi.org/10.1016/j.gloplacha.2013.09.002.

Jeuken, M.C.J.L., Wang, Z.B., Keiller, D., Townend, I.H., Like, G.A., 2003. Morphological response of estuaries to nodal tide variation. In: Proceedings of International Conference on Estuaries and Coasts (ICEC-2003), pp. 166-173.

Koninklijk Nederlands Meteorologisch Instituut (KNMI), 2017. Extreme Zeespiegelstijging in de 21e Eeuw. KNM (in Dutch).

Kragtwijk, N.G., Zitman, T.J., Stive, M.J.F., Wang, Z.B., 2004. Morphological response of tidal basins to human interventions. Coastal Engineering, 51(3), 207-221.https://doi.org/10.1016/j.coastaleng.2003.12.008.

Lacey, G., 1930. Stable channels in alluvium. Minutes of the Proceedings of the Institution of Civil Engineers, 229, 259-292, https://doi.org/10.1680/imotp.1930.15592.

Langbein, W.B., 1963. The hydraulic geometry of a shallow estuary. Bulletin of Int Assoc Sci Hydrology, 8(3), 84-94. https://doi.org/10.1080/02626666309493340.

Le Bars, D., Drijfhout, S., de Vries, H., 2017. A high-end sea level rise probabilistic projection including rapid Antarctic ice sheet mass loss. Environmental Research Letters, 12(4), 044013. https://doi.org/10.1088/1748-9326/aa6512.

Leopold, L.B., Langbein, W.B., 1962. The Concept of Entropy in Landscape Evolution, Geological Survey Professional Paper 500-A. United States Government Printing Office, Washington, D.C. https://doi.org/10.3133/pp500a.

Lodder, Q.J., Wang, Z.B., Elias, E.P.L., van der Spek, A.J.F., de Looff, H., Townend, I.H., 2019. Future response of the Wadden Sea tidal basins to relative sea-level rise: An aggregated modelling approach. Water, 11(10). https://doi.org/10.3390/w11102198.

Meehl, G., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., et al., 2007. Global climate projections, 2007. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Mille, H.L., eds., Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 996.

Nichols, M.M., 1989. Sediment accumulation rates and relative sea-level rise in lagoons. Marine Geology, 88(3-4), 201-219. https://doi.org/10.1016/0025-3227(89)90098-4.

O'Connor, B.A., Nicholson, J., Rayner, R., 1990. Estuary geometry as a function of tidal range. In: Proceedings of the 22nd International Conference on Coastal Engineering. American Society of Civil Engineers, pp. 3050-3062. https://doi.org/10.1061/9780872627765.233.

Renger, E., Partenscky, H.W., 1974. Stability criteria for tidal basins. In: Proceedings of the 14th Coastal Engineering Conference, Vol. 2. ASCE, pp.1605-1618.

Roelvink, D., Reniers, A., 2012. A guide to modelling coastal morphology. In: Advances in Coastal and Ocean Engineering, Vol. 12. World Scientific Publishing, Singapore. https://doi.org/10.1142/7712. 

Rossington, K., Nicholls, R.J., Knaapen, M.A.F., Wang, Z.B., 2007. Morphological behaviour of UK estuaries under conditions of accelerating sea level rise. In: Dohmen-Janssen, C.M., Hulscher, S.J.M.H., eds., River, Coastal and Estuarine Morphodynamics: RCEM2007. Taylor & Francis. https://doi.org/10.1201/noe0415453639-c16.

Soulsby, R., 1997. Dynamics of Marine Sands. Thomas Telford, London.

Spearman, J., 2007. Hybrid Modelling of Managed Realignment, Series No. TR157. HR Wallingford, Wallingford.

Stive, M.J.F., Roelvink, J.A., de Vriend, H.J., 1990. Large-scale coastal evolution concept. The Dutch Coast, Paper No. 9. In: Louisse, C.J., Stive, M.J.F., Wiersma, J., eds., Proceedings of the 22nd International Conference on Coastal Engineering, 1990: The Dutch Coast. American Society of Civil Engineers,  p. 13. https://doi.org/10.1061/9780872627765.150.

Stive, M.J.F., Capobianco, M., Wang, Z.B., Ruol, P., Buijsman, M.C., 1998. Morphodynamics of a tidal lagoon and adjacent coast. In: Dronkers, J., Scheffers M.B.A.M., eds., Proceedings of the 8th International Biennial Conference on Physics of Estuaries and Coastal Seas. A A Balkema, pp. 397-407.

Stive, M.J.F., Wang, Z.B., 2003. Morphodynamic modelling of tidal basins and coastal inlets. In: Lakkhan, C., ed., Advances in Coastal Modelling. Elsevier Sciences, Amsterdam, pp. 367-392. https://doi.org/10.1016/s0422-9894(03)80130-7.

Townend, I.H., Wang, Z.B., Stive, M.J.E., Zhou, Z., 2016a. Development and extension of an aggregated scale model, Part 1: Background to ASMITA. China Ocean Engineering, 30(4), 482-504. https://doi.org/10.1007/s13344-016-0030-x.

Townend, I.H., Wang, Z.B., Stive, M.J.E., Zhou, Z., 2016b. Development and extension of an aggregated scale model, Part 2: Extensions to ASMITA. China Ocean Engineering, 30(5), 651-670. https://doi.org/10.1007/s13344-016-0042-6.

Townend, I.H., Wang, Z.B., Rees, J.G., 2007. Millennial to annual volume changes in the Humber Estuary. Proceedings of  the Royal Society A: Mathematical, Physical and Engineering Science,  463(2079), 837-854. https://doi.org/10.1098/rspa.2006.1798.

Townend, I.H., 2010. An exploration of equilibrium in Venice Lagoon using an idealised form model. Continental Shelf Research, 30(8), 984-999. https://doi.org/10.1016/j.csr.2009.10.012.

van der Spek, A.J.F., Beets, D.J., 1992. Mid-Holocene evolution of a tidal basin in the western Netherlands: A model for future changes in the northern Netherlands under conditions of accelerated sea-level rise? Sedimentary Geology, 80(3-4), 185-197. https://doi.org/10.1016/0037-0738(92)90040-x.

van der Wegen, M., Wang, Z.B., Townend, I.H., Savenije, H.H.G., Roelvink, J.A., 2009. Long-term, morphodynamic modeling of equilibrium in an alluvial tidal basin using a process-based approach. In: Proceedings of the 6th Symposium on River, Coastal and Estuarind Morphodynamics. IAHR.

van Goor, M.A., Zitman, T.J., Wang, Z.B., Stive, M.J.F., 2003. Impact of sea-level rise on the morphological equilibrium state of tidal inlets. Marine Geology, 202, 211-227. https://doi.org/10.1016/s0025-3227(03)00262-7.

van Rijn, L.C., 1993. Principles of Sediment Transport in Rivers, Estuaires and Coastal Seas. Aqua Publications, Amsterdam.

Vermeersen, L.L.A., Slangen, A.B.A., Gerkema, T., Baart, F., Cohen, K.M., Dangendorf, S., Duran-Matute, M., Frederikse, T., Grinsted, A., Hijma, M.P., et al., 2018. Sea level change in the Dutch Wadden Sea. Netherlands Journal of Geosciences, 97(3), 79-127. https://doi.org/10.1017/njg.2018.7.

Walton, T.L., Adams, W.D., 1976. Capacity of inlet outer bars to store sand. In: Proceedings of the 15th Coastal Engineering Conference. ASCE, Honolulu, pp. 1919-1937.

Wang, Z.B., 1992. Theoretical analysis on depth-integrated modelling of suspended sediment transport. Journal of Hydraulic Research, 30(3), 403-420. https://doi.org/10.1080/00221689209498927..

Wang, Z.B., Karssen, B., Fokkink, R.J., Langerak, A., 1998. A dynamic-empirical model for estuarine morphology. In: Dronkers, J., Scheffers, M.B.A.M., eds., Physics of Estuaries and Coastal Seas. A.A. Balkema, Rotterdam, pp. 279-286.

Wang, Z.B., de Vriend, H.J., Stive, M.J.F., Townend, I.H., 2008. On the parameter setting of semi-empirical long-term morphological models for estuaries and tidal lagoons. In: Dohmen-Janssen, C.M., Hulscher, S.J.M.H., eds., River, Coastal and Estuarine Morphodynamics: RCEM 2007. Taylor & Francis, pp. 103-111. https://doi.org/10.1201/noe0415453639-c14.

Wang, Z.B., Hoekstra, P., Burchard, H., Ridderinkhof, H., de Swart, H.E., Stive, M.J.F., 2012. Morphodynamics of the Wadden Sea and its barrier island system. Ocean & Coastal Management, 68, 39-57. https://doi.org/10.1016/j.ocecoaman.2011.12.022.

Wang, Z.B., Townend, I.H., 2012. Influence of the nodal tide on the morphological response of estuaries. Marine Geology, 291-294, 73-82. https://doi.org/10.1016/j.margeo.2011.11.007.

Wang, Z.B., Elias, E.P.L., van der Spek, A.J.F., Lodder, Q.L., 2018. Sediment budget and morphological development of the Dutch Wadden Sea: impact of accelerated sea-level rise and subsidence until 2100. Netherlands Journal of Geosciences, 97(3), 183-214. https://doi.org/10.1017/njg.2018.8.

Winterwerp, J.C., van Kesteren, W.G.M., van Prooijen, B., Jacobs, W., 2012. A conceptual framework for shear flow-induced erosion of soft cohesive sediment beds. Journal of Geophysical Research, 117(C10). https://doi.org/10.1029/2012jc008072.

Wright, A.D., Townend, I.H., 2006. Predicting long term estuary evolution using regime theory. In: Littoral 2006 Conference Proceedings. Gdańsk University of Technology, Gdańsk, pp. 1-9.

Similar articles
1.Gui-hua LU; Qian MA; Jian-hua ZHANG.Analysis of black water aggregation in Taihu Lake[J]. Water Science and Engineering, 2011,4(4): 374-385
2. Chang-lin CHEN, Jun-cheng ZUO, Mei-xiang CHEN, Zhi-gang GAO, C.-K. SHUM.Sea level change under IPCC-A2 scenario in Bohai, Yellow, and East China Seas[J]. Water Science and Engineering, 2014,7(4): 446-456
3. Shao-lei GUO, Dong-po SUN, En-hui JIANG, Peng LI.Equilibrium sediment transport in lower Yellow River during later sediment-retaining period of Xiaolangdi Reservoir[J]. Water Science and Engineering, 2015,8(1): 78-84

Copyright by Water Science and Engineering