Water Science and Engineering 2020, 13(1) 14-23 DOI:   https://doi.org/10.1016/j.wse.2020.03.005  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
PDF(5449KB)
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
Constructed wetlands
Urban stormwater
Pollutant removal
Artificial neural networks (ANNs)
Principal component analysis (PCA)
Authors
PubMed

Predicting pollutant removal in constructed wetlands using artificial neural networks (ANNs)

Christopher Kiizaa, Shun-qi Pana,*, Bettina Bockelmann-Evansa, Akintunde Babatundea,b

a Hydro-environmental Research Centre, School of Engineering, Cardiff University, The Parade, Cardiff CF24 3AA, UK 
b School of Civil Engineering, University of Leeds, Leeds LS2 9J, UK

Abstract

Growth in urban population, urbanisation, and economic development has increased the demand for water, especially in water-scarce regions. Therefore, sustainable approaches to water management are needed to cope with the effects of the urbanisation on the water environment. This study aimed to design novel configurations of tidal-flow vertical subsurface flow constructed wetlands (VFCWs) for treating urban stormwater. A series of laboratory experiments were conducted with semi-synthetic influent stormwater to examine the effects of the design and operation variables on the performance of the VFCWs and to identify optimal design and operational strategies, as well as maintenance requirements. The results show that the VFCWs can significantly reduce pollutants in urban stormwater, and that pollutant removal was related to specific VFCW designs. Models based on the artificial neural network (ANN) method were built using inputs derived from data exploratory techniques, such as analysis of variance (ANOVA) and principal component analysis (PCA). It was found that PCA reduced the dimensionality of input variables obtained from different experimental design conditions. The results show a satisfactory generalisation for predicting nitrogen and phosphorus removal with fewer variable inputs, indicating that monitoring costs and time can be reduced.

Keywords Constructed wetlands   Urban stormwater   Pollutant removal   Artificial neural networks (ANNs)   Principal component analysis (PCA)  
Received 2019-05-28 Revised 2019-09-21 Online: 2020-03-30 
DOI: https://doi.org/10.1016/j.wse.2020.03.005
Fund:
Corresponding Authors: Shun-qi Pan
Email: PanS2@cardiff.ac.uk
About author:

References:

Abdelhakeem, S.G., Aboulroos, S.A., Kamel, M.M., 2016. Performance of a vertical subsurface flow constructed wetland under different operational conditions. Journal of Advanced Research, 7(5), 803-814. https://doi.org/10.1016/j.jare.2015.12.002.

Abyaneh, H.Z., 2014. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters. Journal of Environmental Health Science & Engineering, 40(12), 1-8. https://doi.org/10.1186/2052-336X-12-40.

Akratos, C.S., Tsihrintzis, V.A., 2007. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecological Engineering, 29(2), 173-191. https://doi.org/10.1016/j.ecoleng.2006.06.013.

Akratos, C.S., Papaspyros, J.N.E., Tsihrintzis, V.A., 2008. An artificial neural network model and design equations for BOD and COD removal prediction in horizontal subsurface flow constructed wetlands. Chemical Engineering Journal, 143(1-3), 96-110. https://doi.org/10.1016/j.cej.2007.12.029.

Akratos, C.S., Papaspyros, J.N.E., Tsihrintzis, V.A., 2009. Artificial neural network use in ortho-phosphate and total phosphorus removal prediction in horizontal subsurface flow constructed wetlands. Biosystems Engineering, 102(2), 190-201. https://doi.org/10.1016/j.biosystemseng.2008.10.010.

American Public Health Association (APHA), 2012. Standard Methods for the Examination of Water and Wastewater. APHA, Washington, D.C.

Bagheri, M., Mirbagheri, S.A., Ehteshami, M., Bagheri, Z., 2015. Modeling of a sequencing batch reactor treating municipal wastewater using multi-layer perceptron and radial basis function artificial neural networks. Process Safety and Environmental Protection, 93, 111-123. https://doi.org/10.1016/j.psep.2014.04.006.

Bruch, I., Alewell, U., Hahn, A., Hasselbach, R., Alewell, C., 2014. Influence of soil physical parameters on removal efficiency and hydraulic conductivity of vertical flow constructed wetlands. Ecological Engineering, 68, 124-132. https://doi.org/10.1016/j.ecoleng.2014.03.069.

Cooper, P.F., Job, G.D., Green, M.B., Shutes, R.B.E., 1996. Reed Beds and Constructed Wetlands for Wastewater Treatment. WRC Publications, Marlow.

Dawson, C.W., Abrahart, R.J., Shamseldin, A.Y., Wilby, R.L., 2006. Flood estimation at ungauged sites using artificial neural networks. Journal of Hydrology, 319(1-4),192-201. https://doi.org/10.1016/j.jhydrol.2005.07.032.

Ellis, J.B., Shutes, R.B.E., Revitt, M.D., 2003. Constructed Wetlands and Links with Sustainable Drainage Systems. Urban Pollution Research Centre, Middlesex University, London.

Facility for Advancing Water Biofiltration (FAWB), 2009. Biofiltration Filter Media Guidelines (Version 3.01). Facility for Advancing Water Biofiltration, Melbourne.

George, D., Mallery, P., 2016. IBM SPSS Statistics 23 Step by Step: A Simple Guide and Reference. Routledge, New York.

Gunawardana, C., Egodawatta, P., Goonetilleke, A., 2014. Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces. Environmental Pollution, 184, 44-53. https://doi.org/10.1016/j.envpol.2013.08.010.

Hamed, M.M., Khalafallah, M.G., Hassanien, E.A., 2004. Prediction of wastewater treatment plant performance using artificial neural networks. Environmental Modelling & Software, 19(10), 919-928.https://doi.org/10.1016/j.envsoft.2003.10.005.

Herngren, L., Goonetilleke, A., Ayoko, G.A., 2006. Analysis of heavy metals in road-deposited sediments. Analytica Chimica Acta, 571(2), 270-278. https://doi.org/10.1016/j.aca.2006.04.064.

Jones, A.J., Margetts, S., Durrant, P., 2000. The winGamma User Guide. Cardiff University, Cardiff.

Kadlec, R.H., 2000. The inadequacy of first-order treatment wetland models. Ecological Engineering, 15(1-2), 105-119. https://doi.org/10.1016/S0925-8574(99)00039-7.

Langergraber, G., Simunek, J., 2005. Modeling variably saturated water flow and multicomponent reactive transport in constructed wetlands. Vadose Zone Journal, 4(4), 924-938. https://doi.org/10.2136/Vzj2004.0166.

Langergraber, G., 2007. Simulation of the treatment performance of outdoor subsurface flow constructed wetlands in temperate climates. Science of the total Environment, 380(1-3), 210-219. https://doi.org/10.1016/j.scitotenv.2006.10.030.

Langergraber, G., Prandtstetten, C., Pressl, A., Sleytr, K., Leroch, K., Rohrhofer, R., Haberl, R., 2008. Investigations on nitrogen removal in a two-stage subsurface vertical flow constructed wetland. In: Wastewater Treatment, Plant Dynamics and Management in Constructed and Natural Wetlands. Springer, pp. 199-209.

Lavrova, S., Koumanova, B., 2013. Nutrients and organic matter removal in a vertical-flow constructed wetland. In: Patil, Y.B., Rao, P., Eds., Applied Bioremediation: Active and Passive Approaches. InTech Open Science, Rijeka.

Lee, E.R., Mostaghimi, S., Wynn, T.M., 2002. A model to enhance wetland design and optimize nonpoint source pollution control. Journal of the American Water Resources Association, 38(1), 17-32.

Li, W., Zhang, Y., Cui, L.J., Zhang, M.Y., Wang, Y.F., 2015. Modeling total phosphorus removal in an aquatic environment restoring horizontal subsurface flow constructed wetland based on artificial neural networks. Environmental Science and Pollution Research, 22(16), 12347-12354.

Lin, B., Syed, M., Falconer, R.A., 2008. Predicting faecal indicator levels in estuarine receiving waters: An integrated hydrodynamic and ANN modelling approach. Environmental Modelling & Software, 23(6), 729-740. https://doi.org/10.1016/j.envsoft.2007.09.009.

Lucas, R., 2015. Design and Experimental Assessment of Stormwater Constructed Wetland Systems, Ph. D. Dissertation. Cardiff University, Cardiff.

Lucas, R., Earl, E.R., Babatunde, A.O., Bockelmann-Evans, B.N., 2015. Constructed wetlands for stormwater management in the UK: Aconcise review. Civil Engineering and Environmental Systems, 32(3), 251-268. https://doi.org/10.1080/10286608.2014.958472.

Lyu, T., Zhang, L., Xu, X., Arias, C.A., Brix, H., Carvalho, P.N., 2018. Removal of the pesticide tebuconazole in constructed wetlands: Design comparison, influencing factors and modelling. Environmental Pollution, 233, 71-80. https://doi.org/10.1016/j.envpol.2017.10.040.

May, D.B., Sivakumar, M., 2009. Prediction of urban stormwater quality using artificial neural networks. Environmental Modelling & Software, 24(2), 296-302. https://doi.org/10.1016/j.envsoft.2008.07.004.

May, R.J., Maier H. R., Dandy, G.C., 2009. Developing artificial neural networks for water quality modelling and analysis. In: Hanrahan, G., Ed., Modelling of Pollutants in Complex Environmental Systems. ILM Publications.

Mburu, N., Sanchez-Ramos, D., Rousseau, D.P.L., van Bruggen, J.J.A., Thumbi, G., Stein, O.R., Hook, P.B., Lens, P.N.L., 2012. Simulation of carbon, nitrogen and sulphur conversion in batch-operated experimental wetland mesocosms. Ecological Engineering, 42, 304-315. https://doi.org/10.1016/j.ecoleng.2012.02.003.

Mburu, N., Rousseau, D.P., Stein, O.R., Lens, P.N., 2014. Simulation of batch-operated experimental wetland mesocosms in AQUASIM biofilm reactor compartment. Journal of Environmental Management, 134, 100-108. https://doi.org/10.1016/j.jenvman.2014.01.005.

Seidel, K., 1965. Phenol-AbbauimWasserdurch Scirpus lacustris L. während einer Versuchsdauer von 31Monaten. Naturwissenschaften, 52(13), 398. https://doi.org/10.1007/BF00621438.

Taylor, C.R., Hook, P.B., Stein, O.R., Zabinski, C.A., 2011. Seasonal effects of 19 plant species on COD removal in subsurface treatment wetland microcosms. Ecological Engineering, 37(5), 703-710. https://doi.org/10.1016/j.ecoleng.2010.05.007.

Torrens, A., Molle, P., Boutin, C., Salgot, M., 2009. Impact of design and operation variables on the performance of vertical-flow constructed wetlands and intermittent sand filters treating pond effluent. Water Research, 43(7), 1851-1858. https://doi.org/10.1016/j.watres.2009.01.023.

United Nations, 2018. Revision of World Urbanization Prospects. United Nations, New York.

Wang, W.L., Gao, J.Q., Guo, X., Li, W.C., Tian, X.Y., Zhang, R.Q., 2012. Long-term effects and performance of two-stage baffled surface flow constructed wetland treating polluted river. Ecological Engineering, 49, 93-103. https://doi.org/10.1016/j.ecoleng.2012.08.016.

Wu, H.M, Fan, J.L, Zhang, J., Ngo, H.H., Guo, W.S, Hu, Z., Liang, S., 2015. Decentralized domestic wastewater treatment using intermittently aerated vertical flow constructed wetlands: Impact of influent strengths. Bioresource Technology, 176, 163-168. https://doi.org/10.1016/j.biortech.2014.11.041.

Wynn, T.M., Liehr, S.K., 2001. Development of a constructed subsurface-flow wetland simulation model. Ecological Engineering, 16(4), 519-536. https://doi.org/10.1016/S0925-8574(00)00115-4.

Zhu, D.L., Sun, C., Zhang, H.H., Wu, Z.L., Jia, B., Zhang, Y., 2012. Roles of vegetation, flow type and filled depth on livestock wastewater treatment through multi-level mineralized refuse-based constructed wetlands. Ecological Engineering, 39, 7-15. https://doi.org/10.1016/j.ecoleng.2011.11.002.

Similar articles
1. Ying-hua LI, Hai-bo LI, Xin-yang XU, Xuan GONG, Yong-chun ZHOU.Application of subsurface wastewater infiltration system to on-site treatment of domestic sewage under high hydraulic loading rate[J]. Water Science and Engineering, 2015,8(1): 49-54

Copyright by Water Science and Engineering