Water Science and Engineering 2020, 13(1) 24-33 DOI:    https://doi.org/10.1016/j.wse.2020.03.001  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
PDF(5134KB)
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
Spartina alterniflora
Re-invasion
Chemical control method
Gallant
Yangtze Estuary
Authors
PubMed

Emergency control of Spartina alterniflora re-invasion with a chemical method in Chongming Dongtan, China

Zhi-yuan Zhao a, Yuan Xu a, Lin Yuan a, b, *, Wei Li a, Xiao-jing Zhu a, Li-quan Zhang a

a State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
b Institute of Eco-Chongming, East China Normal University, Shanghai 200062, China

Abstract

The exotic species Spartina alterniflora (S. alterniflora) seriously threatens the stability and functioning of saltmarsh ecosystems in the Yangtze Estuary. Ambitious efforts have been undertaken to control this species, but subsequent re-invasion is frequent, presenting a significant barrier to restoration. The complexity and high cost of integrated physical control programs has necessitated a shift in focus, leading to considerable attention being paid to the potential of herbicides to control S. alterniflora. To find a strategy for emergency control of small and scattered patches of re-invading S. alterniflora, an in situ field experiment using Gallant (Haloxyfop-R-methyl) herbicide was conducted. The growth parameters of plant density and height were used to evaluate the control efficiency of different treatment dosages and times and sediment samples were taken for environmental toxicity analysis. The results show the following: (1) the control efficacy of the maximum proposed application dose (2.70 g/m2) was 92% for continuous swards and 100% for small patches, while those of other dosages (0.45 g/m2, 0.90 g/m2, and 1.35 g/m2) were lower than 40%; (2) the appropriate implementation time was July to August with 100% mortality resulting from a single application, while S. alterniflora was shown to be capable of recovering rapidly after treatment in May; and (3) there were no significant differences in the community structure of meiofauna among the herbicide treatments and the control, and no herbicide residues were detected in sediment samples collected from treatment areas. This chemical control method was implemented in the Shanghai Chongming Dongtan National Bird Nature Reserve (CDNR). The results of this study indicate that Gallant is an environmentally friendly herbicide with high efficiency, which can be adopted for emergency control of re-invading S. alterniflora.

Keywords Spartina alterniflora   Re-invasion   Chemical control method   Gallant   Yangtze Estuary  
Received 2019-03-29 Revised 2019-10-26 Online: 2020-03-30 
DOI: https://doi.org/10.1016/j.wse.2020.03.001
Fund:

 This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFC1201100), the National Natural Science Foundation of China (Grant No. 41876093), and the Scientific Research Project of the Shanghai Science and Technology Committee (Grants No. 17DZ1201902, 18DZ1206506, and 18DZ1204802).

Corresponding Authors: Lin Yuan
Email: lyuan@sklec.ecnu.edu.cn
About author:

References:

An, S.Q., Gu, B.H., Zhou, C.F., Wang, Z.S., Deng, Z.F., Zhi, Y.B., Li, H.L., Chen, L., Yu, D.H., Liu, Y.H., 2007. Spartina invasion in China: Implications for invasive species management and future research. Weed Research, 47(3), 183-191. https://doi.org/10.1111/j.1365-3180.2007.00559.x.

Anderson, L.W.J., 2007. Potential for sediment-applied acetic acid for control of invasive Spartina alterniflora. Journal of Aquatic Plant Management, 45(2), 100-105. https://doi.org/10.1093/icesjms/fsm095.

Back, C.L., Holomuzki, J.R., Klarer, D.M., Whyte, R.S., 2012. Herbiciding invasive reed: Indirect effects on habitat conditions and snail-algal assemblages one year post-application. Wetlands Ecology and Management, 20(5), 419-431. https://doi.org/10.1007/s11273-013-9296-4.

Buckley, Y.M., Bolker, B.M., Rees, M., 2007. Disturbance, invasion and re-invasion: Managing the weed-shaped hole in disturbed ecosystems. Ecology Letters, 10(9), 809-817. https://doi.org/10.1111/j.1461-0248.2007.01067.x.

Clarke, K.R., Gorley, R.N., Somerfield, P.J., Warwick, R.M., 2014. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 3rd ed. Primer-E, Plymouth.

Cook-Patton, S.C., Agrawal, A.A., 2014. Exotic plants contribute positively to biodiversity functions but reduce native seed production and arthropod richness. Ecology, 95(6), 1642-1650. https://doi.org/10.1890/13-0782.1.

Cuddington, K., 2011. Legacy effects: The persistent impact of ecological interactions. Biological Theory, 6(3), 203-210. https://doi.org/10.1007/s13752-012-0027-5.

Cutting, K.J., Hough-Goldstein, J., 2013. Integration of biological control and native seeding to restore invaded plant communities. Restoration Ecology, 21(5), 648-655. https://doi.org/10.1111/j.1526-100X.2012.00936.x.

Gabler, C.A., Siemann, E., 2012. Environmental variability and ontogenetic niche shifts in exotic plants may govern re-invasion pressure in restorations of invaded ecosystems. Restoration Ecology, 20(5), 545-550. https://doi.org/10.1111/j.1526-100X.2012.00901.x.

Galatowitsch, S., Richardson, D.M., 2005. Riparian scrub recovery after clearing of invasive alien trees in headwater streams of the Western Cape, South Africa. Biological Conservation, 122(4), 509-521. https://doi.org/10.1016/j.biocon.2004.09.008.

Grevstad, F.S., 2005. Simulating control strategies for a spatially structured weed invasion: Spartina alterniflora (Loisel) in Pacific Coast estuaries. Biological Invasions, 7(4), 665-677. https://doi.org/10.1007/s10530-004-5855-1.

Hayward, B.W., Grenfell, H.R., Sabaa, A.T., Morley, M.S., 2008. Ecological impact of the introduction to New Zealand of Asian date mussels and cordgrass: The foraminiferal, ostracod and molluscan record. Estuaries and Coasts, 31(5), 941-959. https://doi.org/10.1007/s12237-008-9070-7.

Hedge, P., Kriwoken, L.K., Patten, K., 2003. A review of Spartina management in Washington State, US. Journal of Aquatic Plant Management, 41(2), 82-90.

Hu, M.Y., Ge, Z.M., Li, Y.L., Li, S.H., Tan, L.S., Xie, L.N., Hu, Z.J., Zhang, T.Y., Li, X.Z., 2019. Do short-term increases in river and sediment discharge determine the dynamics of coastal mudflat and vegetation in the Yangtze Estuary? Estuarine, Coastal and Shelf Science, 220, 176-184. https://doi.org/10.1016/j.ecss.2019.03.004.

Hu, Z.J., Ge, Z.M., Ma, Q., Zhang, Z.T., Tang, C.D., Cao, H.B., Zhang, T.Y., Li, B., Zhang, L.Q., 2015. Revegetation of a native species in a newly formed tidal marsh under varying hydrological conditions and planting densities in the Yangtze Estuary. Ecological Engineering, 83, 354-363. https://doi.org/10.1016/j.ecoleng.2015.07.005.

Huang, H.M., Zhang, L.Q., Guan, Y.J., Wang, D.H., 2008. A cellular automata model for population expansion of Spartina alterniflora, at Jiuduansha Shoals, Shanghai, China. Estuarine Coastal and Shelf Science, 77(1), 47-55. https://doi.org/10.1016/j.ecss.2007.09.003.

Kettenring, K.M., Adams, C.R., 2011. Lessons learned from invasive plant control experiments: A systematic review and meta-analysis. Journal of Applied Ecology, 48(4), 970-979. https://doi.org/10.1111/j.1365-2664.2011.01979.x.

Knott, C.A., Webster, E.P., Nabukalu, P., 2013. Control of smooth cordgrass (Spartina alterniflora) seedlings with four herbicides. Journal of Aquatic Plant Management, 51, 132-135.

Li, H.P., Zhang, L.Q., 2008. An experimental study on physical controls of an exotic plant Spartina alterniflora in Shanghai, China. Ecological Engineering, 32(1), 11-21. https://doi.org/10.1016/j.ecoleng.2007.08.005.

Li, X., Zhou, Y.X., Zhang, L.P., Kuang, R.Y., 2014. Shoreline change of Chongming Dongtan and response to river sediment load: A remote sensing assessment. Journal of Hydrology, 511, 432-442. https://doi.org/10.1016/j.jhydrol.2014.02.013.

Liao, Y.B., Shou, L., Tang, Y.B., Gao, A.G., Chen, Q.Z., Yan, X.J., Chen, J.F., 2018. Influence of two non-indigenous plants on intertidal macrobenthic communities in Ximen Island Special Marine Protected Area, China. Ecological Engineering, 112, 96-104. https://doi.org/10.1016/j.ecoleng.2017.12.023.

Liu, H.Y., Lin, Z.S., Zhang, M.Y., Qi, X.Z., 2017. Relative importance of sexual and asexual reproduction for range expansion of Spartina alterniflora in different tidal zones on Chinese coast. Estuarine Coastal and Shelf Science, 185, 22-30. https://doi.org/10.1016/j.ecss.2016.11.024.

Liu, W.W., Maung, D.K., Strong, D.R., Pennings, S.C., Zhang, Y., 2016. Geographical variation in vegetative growth and sexual reproduction of the invasive Spartina alterniflora in China. Journal of Ecology, 104(1), 173-181. https://doi.org/10.1111/1365-2745.12487.

Major, W.W.I., Grue, C.E., Grassley J.M., Conquest L.L., 2003. Mechanical and chemical control of smooth cordgrass in Willapa Bay, Washington. Journal of Aquatic Plant Management, 41(1), 6-12. https://doi.org/10.1023/A:1022946700883.

Mark, P., Malcolm, G., 2017. Trapping and episodic flushing of suspended sediment from a tidal river. Continental Shelf Research, 143, 286-294. https://doi.org/10.1016/j.csr.2016.07.007.

Mateos-Naranjo, E., Cambrolle, J., Garcia De Lomas, J., Parra, R., Redondo-Gomez, S., 2012. Mechanical and chemical control of the invasive cordgrass Spartina densiflora and native plant community responses in an estuarine salt marsh. Journal of Aquatic Plant Management, 50, 106-111.

Miller, G., Croyhers, K., 2004. Controlling invasive Spartina: The New Zealand success story. In: Proceedings of the Third International Conference on Invasive Spartina, 247-248. San Francisco.

Panetta, F.D., Sparkes, E.C., 2001. Re-invasion of a riparian forest community by an animal-dispersed tree weed following control measures. Biological Invasions, 3(1), 75-88. https://doi.org/10.1023/A:1011408703336.

Patten, K., 2003. Persistence and non-target impact of imazapyr associated with smooth cordgrass control in an estuary. Journal of Aquatic Plant Management, 41, 1-6.

Patten, K., 2004. Comparison of chemical and mechanical control efforts for invasive Spartina inWillapa Bay, Washington. In: Proceedings of the Third International Conference on Invasive Spartina, San Francisco, pp. 249-254.

Patten, K., O'Casey, C., Metzger, C., 2017. Large-scale chemical control of smooth cordgrass (Spartina alterniflora) in Willapa Bay, WA: Towards eradication and ecological restoration. Invasive Plant Science and Management, 10(3), 284-292. https://doi.org/10.1017/inp.2017.25.

Pearson, D.E., Ortega, Y.K., Runyon, J.B., Butler, J.L., 2016. Secondary invasion: The bane of weed management. Biological Conservation, 197, 8-17. https://doi.org/10.1016/j.biocon.2016.02.029.

Richardson, D.M., Kluge, R.L., 2008. Seed banks of invasive Australian Acacia species in South Africa: Role in invasiveness and options for management. Perspectives in Plant Ecology Evolution and Systematics, 10(3), 161-177. https://doi.org/10.1016/j.ppees.2008.03.001.

Sheng, Q., Huang, M.Y., Tang, C.D., Niu, D.L., Ma, Q., Wu, J.H., 2014. Effects of different eradication measures for controlling Spartina alterniflora on plants and macrobenthic invertebrates. Acta Hydrobiologica Sinica, 38(2), 279-290 (in Chinese). https://doi.org/10.7541/2014.41.

Shimeta, J., Saint, L., Verspaandonk, E.R., Nugegoda, D., Howe, S., 2016. Long-term ecological consequences of herbicide treatment to control the invasive grass, Spartina anglica, in an Australian saltmarsh. Estuarine Coastal and Shelf Science, 176, 58-66. https://doi.org/10.1016/j.ecss.2016.04.010.

Simenstad, C.A., Cordell, J.R., Lucinda, T., Weitkamp, L.A., Paveglio, F.L., Kilbride, K.M., Fresh, K.L., Grue, C.E., 1996. Use of rodeo®; and x-77®; spreader to control smooth cordgrass (Spartina alterniflora) in a southwestern Washington Estuary: 2. Effects on benthic microflora and invertebrates. Environmental Toxicology and Chemistry, 15(6), 969-978. https://doi.org/10.1002/etc.5620150620.

Strong, D.R., Ayres, D.A., 2016. Control and consequences of Spartina spp. invasions with focus upon San Francisco Bay. Biological Invasions, 18(8), 2237-2246. https://doi.org/10.1007/s10530-015-0980-6.

Theoharides, K.A., Dukes, J.S., 2007. Plant invasion across space and time: Factors affecting nonindigenous species success during four stages of invasion. New Phytologist, 176(2), 256-273. https://doi.org/10.1111/j.1469-8137.2007.02207.x.

Wu, X.T., Zhao, J., Wu, J.L., Wang, D.L., Deng, Q.H., Huang, Y., 2013. Determination of Haloxyfop-R-methy in andrographis herba and soil by gas chromatography with electron capture detector. Journal of Analytical Science, 29(2), 227-230 (in Chinese).

Xiao, D.R., Zhang, L.Q., Zhu, Z.C., 2009. A study on seed characteristics and seed bank of Spartina alterniflora at saltmarshes in the Yangtze Estuary, China. Estuarine, Coastal and Shelf Science, 83(1), 105-110. https://doi.org/10.1016/j.ecss.2009.03.024.

Xu, K.D., Du, Y.F., Lei, Y.L., Dai, R.H., 2010. A practical method of ludox density gradient centrifugation combined with protargol staining for extracting and estimating ciliates in marine sediments. European Journal of Protistology, 46(4), 263-270. https://doi.org/10.1016/j.ejop.2010.04.005.

Xu, Y., Stoeck, T., Forster, D., Ma, Z.H., Zhang, L.Q., Fan, X.P., 2018. Environmental status assessment using biological traits analyses and functional diversity indices of benthic ciliate communities. Marine Pollution Bulletin, 131, 646-654. https://doi.org/10.1016/j.marpolbul.2018.04.064.

Yuan, L., Zhang, L.Q., Xiao, D.R., Huang, H.M., 2011. The application of cutting plus waterlogging to control Spartina alterniflora on saltmarshes in the Yangtze Estuary, China. Estuarine, Coastal and Shelf Science, 92(1), 103-110. https://doi.org/10.1016/j.ecss.2010.12.019.

Yuan, L., Ge, Z.M., Fan, X.Z., Zhang, L.Q., 2014. Ecosystem-based coastal zone management: A comprehensive assessment of coastal ecosystems in the Yangtze Estuary coastal zone. Ocean and Coastal Management, 95, 63-71. https://doi.org/10.1016/j.ocecoaman.2014.04.005.

Zhang, C.H., Yang, Z.C., Wang, J.J., Yang, F.Z., Fan, X.Z., 2016. Simultaneous determination of acetochlor and clomazone residues in soil by HPLC with ultrasonic extraction. Agrochemicals, 55(6), 434-436 (in Chinese).

Zheng, S.Y., Shao, D.D., Asaeda, T., Sun, T., Luo, S.X., Cheng, M., 2016. Modeling the growth dynamics of Spartina alterniflora and the effects of its control measures. Ecological Engineering, 97, 144-156. https://doi.org/10.1016/j.ecoleng.2016.09.006.

Zhu, Z.C., Bouma, T.J., Ysebaert, T., Zhang, L.Q., Herman, P.M.J., 2014. Seed arrival and persistence at the tidal mudflat: Identifying key processes for pioneer seedling establishment in salt marshes. Marine Ecology Progress, 513, 97-109. https://doi.org/10.3354/meps10920.

Zou, Y.A., Tang, C.D., Niu, J.Y., Wang, T.H., Xie, Y.H., Guo, H., 2016. Migratory waterbirds response to coastal habitat changes: Conservation implications from long-term detection in the Chongming Dongtan wetlands, China. Estuaries and Coasts, 39(1), 273-286. https://doi.org/10.1007/s12237-015-9991-x.

Similar articles
1. Xi LI, Yi-gang WANG, Su-xiang ZHANG.Numerical simulation of water quality in Yangtze Estuary[J]. Water Science and Engineering, 2009,2(4): 40-51
2.Si-long Huang, Yi-ning Chen, Yan Li.Spatial dynamic patterns of saltmarsh vegetation in southern Hangzhou Bay: Exotic and native species[J]. Water Science and Engineering, 2020,13(1): 34-44

Copyright by Water Science and Engineering