Water Science and Engineering 2020, 13(1) 45-56 DOI:   https://doi.org/10.1016/j.wse.2020.03.006  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Salt marshes
Wind waves
Lateral erosion

Control of wind-wave power on morphological shape of salt marsh margins

Alvise Finotello a,b,c,*, Marco Marani c,d, Luca Carniello c,d, Mattia Pivato c,d, Marcella Roner a, Laura Tommasini a, Andrea D’alpaos a,c

a Department of Geosciences, University of Padova, Padova 35131, Italy
b Department of Environmental Sciences, Informatics and Statistics, University of Venice Ca’ Foscari, Venice 30172, Italy
c Center for Lagoon Hydrodynamics and Morphodynamics, University of Padova, Padova 35131, Italy
d Department of Civil, Environmental and Architectural Engineering, Padova 35131, Italy


Salt marshes are among the most common morphological features found in tidal landscapes and provide ecosystem services of primary ecological and economic importance. However, the continued rise in relative sea level and increasing anthropogenic pressures threaten the sustainability of these environments. The alarmingly high rates of salt marsh loss observed worldwide, mainly dictated by the lateral erosion of their margins, call for new insights into the mutual feedbacks among physical, biological, and morphological processes that take place at the critical interface between salt marshes and the adjoining tidal flats. We combined field measurements, remote sensing data, and numerical modeling to investigate the interplays between wind waves and the morphology, ecology, and planform evolution of salt marsh margins in the Venice Lagoon of Italy. Our results confirm the existence of a positive linear relationship between incoming wave power density and rates of salt marsh lateral retreat. In addition, we show that lateral erosion significantly decreases when halophytic vegetation colonizes the marsh margins, and that different erosion rates in vegetated margins are associated with different halophytes. High marsh cliffs and smooth shorelines are expected along rapidly eroding margins, whereas erosion rates are reduced in gently sloped, irregular edges facing shallow tidal flats that are typically exposed to low wind-energy conditions. By highlighting the relationships between the dynamics and functional forms of salt marsh margins, our results represent a critical step to address issues related to conservation and restoration of salt marsh ecosystems, especially in the face of changing environmental forcings.

Keywords Keywords   Salt marshes   Wind waves   Lateral erosion   Morphodynamics   Vegetation  
Received 2019-07-31 Revised 2019-12-02 Online: 2020-03-30 
DOI: https://doi.org/10.1016/j.wse.2020.03.006
Corresponding Authors: Alvise Finotello
Email: alvise.finotello@unipd.it
About author:


Adam, P., 1990. Salt Marsh Ecology. Cambridge University Press, New York.

Allen, J.R.L., 1993. Muddy alluvial coasts of Britain: Field criteria for shoreline position and movement in the recent past. Proceedings of the Geologists’ Association, 104(4), 241262. https://doi.org/10.1016/S0016-7878(08)80044-2.

Barbier, E.B., Hacker, S.D., Kennedy, C., Koch, E.W., Stier, A.C., Silliman, B.R., 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2), 169193. https://doi.org/10.1890/10-1510.1.

Belliard, J.-P., Toffolon, M., Carniello, L., D’Alpaos, A., 2015. An ecogeomorphic model of tidal channel initiation and elaboration in progressive marsh accretional contexts. Journal of Geophysical Research: Earth Surface, 120(6), 1040–1064. https://doi.org/10.1002/2015JF003445.

Belluco, E., Camuffo, M., Ferrari, S., Modenese, L., Silvestri, S., Marani, A., Marani, M., 2006. Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing. Remote Sensing of Environment, 105(1), 54–67. https://doi.org/10.1016/j.rse.2006.06.006.

Bendoni, M., Francalanci, S., Cappietti, L., Solari, L., 2014. On salt marshes retreat: Experiments and modeling toppling failures induced by wind waves. Journal of Geophysical Research: Earth Surface, 119(3), 603–620. https://doi.org/10.1002/2013JF002967.

Bendoni, M., Mel, R., Lanzoni, S., Francalanci, S., Oumeraci, H., Solari, L., 2016. Insights into lateral marsh retreat mechanism through localized field measurements. Water Resources Research, 52(2), 1446–1464. https://doi.org/10.1002/2015WR017966.

Bonham, C.D., 1989. Measurements for Terrestrial Vegetation. John Wiley & Sons, New York.

Breugem, W.A., Holthuijsen, L.H., 2006. Generalized shallow water wave growth from Lake George. Journal of Waterway, Port, Coastal, and Ocean Engineering 133(3), 173–182. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:3(173).

Broome, S.W., Seneca, E.D., Woodhouse, W.W., 1988. Tidal salt marsh restoration. Aquatic Botany, 32(1-2), 122. https://doi.org/10.1016/0304-3770(88)90085-X.

Caniglia, G., Contin, G., Fusco, M., Anoè, A., Zanaboni, A., 1997. Confronto su base vegetazionale tra due barene della laguna di Venezia. Fitosociologia, 34, 111–119 (in Italian).

Carlisle, B., Carullo, M., Smith, J., Wigand, C., McKinney, R., Charpentier, M., Fillis, D., Stolt, M., 2006. Rapid Method for Assessing Estuarine (Salt) Marshes in New England, Version 1.4. Patuxent Wildlife Research Center, Laurel.

Carniello, L., Defina, A., Fagherazzi, S., D’Alpaos, L., 2005. A combined wind wave-tidal model for the Venice Lagoon, Italy. Journal of Geophysical Research: Earth Surface, 110, 1–15. https://doi.org/10.1029/2004JF000232.

Carniello, L., Defina, A., D’Alpaos, L., 2009. Morphological evolution of the Venice Lagoon: Evidence from the past and trend for the future. Journal of Geophysical Research: Earth Surface, 114(F4), 1–10. https://doi.org/10.1029/2008JF001157.

Carniello, L., D’Alpaos, A., Defina, A., 2011. Modeling wind waves and tidal flows in shallow micro-tidal basins. Estuarine, Coastal and Shelf Science, 92(2), 263–276. https://doi.org/10.1016/j.ecss.2011.01.001.

Carniello, L., Defina, A., D’Alpaos, L., 2012. Modeling sand-mud transport induced by tidal currents and wind waves in shallow microtidal basins: Application to the Venice Lagoon (Italy). Estuarine, Coastal and Shelf Science, 102-103, 105–115. https://doi.org/10.1016/j.ecss.2012.03.016.

Carniello, L., D’Alpaos, A., Botter, G., Rinaldo, A., 2016. Statistical characterization of spatio-temporal sediment dynamics in the Venice Lagoon. Journal of Geophysical Research: Earth Surface, 121(5), 1049–1064. https://doi.org/10.1002/2015JF003793.

Cazzin, M., Ghirelli, L., Mion, D., Scarton, F., 2009. Completamento della cartografia della vegetazione e degli habitat laguna di Venezia: Anni 20052007. Lavori Societa Veneziana di Scienze Naturali, 34, 81–89 (in Italian).

Chen, X.D., Zhang, C.K., Paterson, D.M., Thompson, C.E.L., Townend, I.H., Gong, Z., Zhou, Z., 2017. Hindered erosion: The biological mediation of noncohesive sediment behavior. Water Resources Research, 53(6), 4787–4801. https://doi.org/doi:10.1002/2016WR020105.

Chmura, G.L., Anisfeld, S.C., Cahoon, D.R., Lynch, J.C., 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles. 17(4), 1111. https://doi.org/10.1029/2002gb001917.

Coco, G., Zhou, Z., van Maanen, B., Olabarrieta, M., Tinoco, R., Townend, I.H., 2013. Morphodynamics of tidal networks: Advances and challenges. Marine Geology, 346, 1–16. https://doi.org/10.1016/j.margeo.2013.08.005.

Cosma, M., Ghinassi, M., D’Alpaos, A., Roner, M., Finotello, A., Tommasini, L., Gatto, R., 2019. Point-bar brink and channel thalweg trajectories depicting interaction between vertical and lateral shifts of microtidal channels in the Venice Lagoon (Italy). Geomorphology. 342, 37–50. https://doi.org/10.1016/j.geomorph.2019.06.009.

Costanza, R., Déarge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K.E., Naeem, S., 1997. The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260. https://doi.org/10.1038/387253a0.

Da Lio, C., D’Alpaos, A., Marani, M., 2013. The secret gardener: Vegetation and the emergence of biogeomorphic patterns in tidal environments. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 371(2004), 20120367. https://doi.org/10.1098/rsta.2012.0367.

D’Alpaos, A., Lanzoni, S., Marani, M., Rinaldo, A., 2007. Landscape evolution in tidal embayments: Modeling the interplay of erosion, sedimentation, and vegetation dynamics. Journal of Geophysical Research: Earth Surface, 112(F1), 1–17. https://doi.org/10.1029/2006JF000537.

D’Alpaos, A., Mudd, S.M., Carniello, L., 2011. Dynamic response of marshes to perturbations in suspended sediment concentrations and rates of relative sea level rise. Journal of Geophysical Research: Earth Surface, 116(F4), 1–13. https://doi.org/10.1029/2011JF002093.

D’Alpaos, A., Carniello, L., Rinaldo, A., 2013. Statistical mechanics of wind wave-induced erosion in shallow tidal basins: Inferences from the Venice Lagoon. Geophysical Research Letters, 40(13), 3402–3407. https://doi.org/10.1002/grl.50666.

D’Alpaos, A., Marani, M., 2016. Reading the signatures of biologic-geomorphic feedbacks in salt-marsh landscapes. Advances in Water Resources, 93, 265–275. https://doi.org/10.1016/j.advwatres.2015.09.004.

D’Alpaos, L., Defina, A., 2007. Mathematical modeling of tidal hydrodynamics in shallow lagoons: A review of open issues and applications to the Venice Lagoon. Computers and Geosciences, 33(4), 476–496. https://doi.org/10.1016/j.cageo.2006.07.009.

D’Alpaos, L., 2010. Fatti e misfatti di idraulica lagunare. La laguna di Venezia dalla diversione dei fiumi alle nuove opere delle bocche di porto. Istituto Veneto di Scienze, Lettere ed Arti, Venice (in Italian). 

Day, J.W., Britsch, L.D., Hawes, S.R., Shaffer, G.P., Reed, D.J., Cahoon, D.R., 2000. Pattern and process of land loss in the Mississippi Delta: A spatial and temporal analysis of wetland habitat change. Estuaries, 23(4), 425423. https://doi.org/10.2307/1353136.

Day, J.W., Boesch, D.F., Clairain, E.J., Kemp, G.P., Laska, S.B., Mitsch, W.J., Orth, K., Mashriqui, H., Reed, D.J., Shabman, L., et al., 2007. Restoration of the Mississippi Delta: Lessons from hurricanes Katrina and Rita. Science, 315(5819), 16791684. https://doi.org/10.1126/science.1137030.

Defina, A., 2000. Two-dimensional shallow flow equations for partially dry areas. Water Resources Research, 36(11), 32513264. https://doi.org/10.1029/2000WR900167.

Deheyn, D.D., Shaffer, L.R., 2007. Saving Venice: Engineering and ecology in the Venice Lagoon. Technology in Society, 29(2), 205213. https://doi.org/10.1016/j.techsoc.2007.01.014.

Delaune, R.D., Pezeshki, S.R., 2003. The role of soil organic carbon in maintaining surface elevation in rapidly subsiding U.S. Gulf of Mexico coastal marshes. Water, Air, and Soil Pollution: Focus, 3, 167179. https://doi.org/10.1023/A:1022136328105.

Donnelly, J.P., Bertness, M.D., 2001. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proceedings of the National Academy of Sciences, 98(25), 1421814223. https://doi.org/10.1073/pnas.251209298.

Evans, B.R., Möller, I., Spencer, T., Smith, G., 2019. Dynamics of salt marsh margins are related to their three-dimensional functional form. Earth Surface Processes and Landforms, 44(9), 18161827. https://doi.org/10.1002/esp.4614.

Feagin, R.A., Barbier, E.B., Koch, E.W., Silliman, B.R., Hacker, S.D., Wolanski, E., Primavera, J.H., Granek, E.F., Polasky, S., Aswani, S., et al., 2008. Vegetation’s role in coastal protection. Science, 320(5873), 176177. https://doi.org/10.1126/science.320.5873.176b.

Feagin, R.A., Lozada-Bernard, S.M, Ravens, T.M., Möller, I., Yeager, K.M., Baird, A.H., 2009. Does vegetation prevent wave erosion of salt marsh edges? Proceedings of the National Academy of Sciences of the United States of America, 106, 10109–10113. https://doi.org/ 10.1073/pnas.0901297106.

Ferrarin, C., Tomasin, A., Bajo, M., Petrizzo, A., Umgiesser, G., 2015. Tidal changes in a heavily modified coastal wetland. Continental Shelf Research, 101, 22–33. https://doi.org/10.1016/j.csr.2015.04.002.

Finotello, A., Lanzoni, S., Ghinassi, M., Marani, M., Rinaldo, A., D’Alpaos, A., 2018. Field migration rates of tidal meanders recapitulate fluvial morphodynamics. Proceedings of the National Academy of Sciences, 115(7), 1463–1468. https://doi.org/10.1073/pnas.1711330115.

Finotello, A., Canestrelli, A., Carniello, L., Ghinassi, M., D’Alpaos, A., 2019a. Tidal flow asymmetry and discharge of lateral tributaries drive the evolution of a microtidal meander in the Venice Lagoon (Italy). Journal of Geophysical Research: Earth Surface, 124(12), 30433066. https://doi.org/10.1029/2019jf005193.

Finotello, A., Lentsch, N., Paola, C., 2019b. Experimental delta evolution in tidal environments: Morphologic response to relative sea-level rise and net deposition. Earth Surface Processes and Landforms, 44(10), 2000–2015. https://doi.org/10.1002/esp.4627.

Finotello, A., D’Alpaos, A., Bogoni, M., Ghinassi, M., Lanzoni, S., 2020. Remotely-sensed planform morphologies reveal fluvial and tidal nature of meandering channels. Scientific Reports, 10, 1–13. https://doi.org/10.1038/s41598-019-56992-w.

FitzGerald, D.M., Hughes, Z., 2019. Marsh processes and their response to climate change and sea-level rise. Annual Review of Earth and Planetary Sciences, 47, 481–517. https://doi.org/10.1146/annurev-earth-082517-010255.

Gatto, P., Carbognin, L., 1981. The Lagoon of Venice: Natural environmental trend and man-induced modification. Hydrological Sciences Bulletin, 26(4), 379–391. https://doi.org/10.1080/02626668109490902.

Gedan, K.B., Silliman, B.R., Bertness, M.D., 2009. Centuries of human-driven change in salt marsh ecosystems. Annual Review of Marine Science, 1, 117141. https://doi.org/10.1146/annurev.marine.010908.163930.

Ghinassi, M., D'alpaos, A., Gasparotto, A., Carniello, L., Brivio, L., Finotello, A., Roner, M., Franceschinis, E., Realdon, N., Howes, N., et al.2018a. Morphodynamic evolution and stratal architecture of translating tidal point bars: Inferences from the northern Venice Lagoon (Italy). Sedimentology, 65(4), 13541377. https://doi.org/10.1111/sed.12425.

Ghinassi, M., Brivio, L., D’Alpaos, A., Finotello, A., Carniello, L., Marani, M., Cantelli, A., 2018b. Morphodynamic evolution and sedimentology of a microtidal meander bend of the Venice Lagoon (Italy). Marine and Petroleum Geology 96, 391–404. https://doi.org/ 10.1016/j.marpetgeo.2018.06.011.

Ghinassi, M., D’Alpaos, A., Tommasini, L., Brivio, L., Finotello, A., Stefani, C., 2019. Tidal currents and wind waves controlling sediment distribution in a subtidal point bar of the Venice Lagoon (Italy). Sedimentology, 66(7), 2926–2949. https://doi.org/10.1111/sed.12616.

Howes, N., FitzGerald, D.M., Hughes, Z.J., Georgiou, I.Y., Kulp, M., Miner, M.D., Smith, J.M., Barras, J., 2010. Hurricane-induced failure of low salinity wetlands. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14014–14019. https://doi.org/10.1073/pnas.0914582107.

Hu, Z., van Belzen, J., van der Wal, D., Balke, T., Wang, Z.B., Stive, M., Bouma, T.J., 2015. Windows of opportunity for salt marsh vegetation establishment on bare tidal flats: The importance of temporal and spatial variability in hydrodynamic forcing. Journal of Geophysical Research: Biogeosciences, 120(7), 1450–1469. https://doi.org/10.1002/2014JG002870.

Kearney, W.S., Fagherazzi, S., 2016. Salt marsh vegetation promotes efficient tidal channel networks. Nature Communications, 120(7), 1–7. https://doi.org/10.1038/ncomms12287.

Kerr, A.M., Baird, A.H., 2007. Natural barriers to natural disasters. BioScience, 57(2), 102103. https://doi.org/10.1641/b570202.

Kirwan, M.L., Murray, A.B., 2007. A coupled geomorphic and ecological model of tidal marsh evolution. Proceedings of the National Academy of Sciences of the United States of America, 104(15), 6118–6122. https://doi.org/10.1073/pnas.0700958104.

Kirwan, M.L., Mudd, S.M., 2012. Response of salt-marsh carbon accumulation to climate change. Nature, 489, 550553. https://doi.org/10.1038/nature11440.

Larsen, L.G., Harvey, J.W., 2010. How vegetation and sediment transport feedbacks drive landscape change in the everglades and wetlands worldwide. The American Naturalist, 176(3), 6679. https://doi.org/10.1086/655215.

Leonardi, N., Fagherazzi, S., 2014. How waves shape salt marshes. Geology, 42(10), 887–890. https://doi.org/10.1130/G35751.1.

Leonardi, N., Ganju, N.K., Fagherazzi, S., 2016a. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proceedings of the National Academy of Sciences, 113(1), 64–68. https://doi.org/10.1073/pnas.1510095112.

Leonardi, N., Defne, Z., Ganju, N.K., Fagherazzi, S., 2016b. Salt marsh erosion rates and boundary features in a shallow Bay. Journal of Geophysical Research?: Earth Surface, 121(10), 1861–1875. https://doi.org/10.1002/2016JF003975.

Luternauer, J.L., Atkins, R.J., Moody, A.I., Williams, H.E., Gibson, J.W., 1995. Salt marshes. Developments in Sedimentology, 53, 307332. https://doi.org/10.1016/S0070-4571(05)80031-7.

Marani, M., Lanzoni, S., Silvestri, S., Rinaldo, A., 2004. Tidal landforms, patterns of halophytic vegetation and the fate of the Lagoon of Venice. Journal of Marine Systems, 51(1-4), 191–210. https://doi.org/10.1016/j.jmarsys.2004.05.012.

Marani, M., Silvestri, S., Belluco, E., Ursino, N., Comerlati, A., Tosatto, O., Putti. M., 2006. Spatial organization and ecohydrological interactions in oxygen-limited vegetation ecosystems. Water Resources Research. 42(6), W06D06. https://doi.org/10.1029/2005WR004582.

Marani, M., D’Alpaos, A., Lanzoni, S., Carniello, L., Rinaldo, A., 2010. The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics. Journal of Geophysical Research: Earth Surface, 115(F4), F04004. https://doi.org/10.1029/2009JF001600.

Marani, M., D’Alpaos, A., Lanzoni, S., Santalucia, M., 2011. Understanding and predicting wave erosion of marsh edges. Geophysical Research Letters, 38(21), 1–5. https://doi.org/10.1029/2011GL048995.

Marani, M., da Lio, C., D’Alpaos, A., D’Alpaos, A., 2013. Vegetation engineers marsh morphology through multiple competing stable states. Proceedings of the National Academy of Sciences, 110(9), 3259–3263. https://doi.org/10.1073/pnas.1218327110.

Mariotti, G., Fagherazzi, S., Wiberg, P.L., McGlathery, K.J., Carniello, L., Defina, A., 2010. Influence of storm surges and sea level on shallow tidal basin erosive processes. Journal of Geophysical Research: Oceans, 115(C11), C11012. https://doi.org/10.1029/2009JC005892.

McLoughlin, S.M., Wiberg, P.L., Safak, I., Mcglathery, K.J., 2015. Rates and forcing of marsh edge erosion in a shallow coastal bay. Estuaries and Coasts, 38, 620–638. https://doi.org/10.1007/s12237-014-9841-2.

Mel, R., Carniello, L., D’Alpaos, L., 2019. Addressing the effect of the Mo.S.E. barriers closure on wind setup within the Venice Lagoon. Estuarine, Coastal and Shelf Science, 225(30), 104386. https://doi.org/10.1016/j.ecss.2019.106249.

Mion, D., Ghirelli, L., Cazzin, M., Cavalli, I., Scarton, F., 2010. Vegetazione alofila in laguna di Venezia?: Dinamiche a breve e medio termine. Lavori Societa Veneziana di Scienze Naturali, 35, 57–70 (in Italian).

Mitsch, W.J., Gosselink, J.G., 2000. The value of wetlands: Importance of scale and landscape setting. Ecological Economics, 35(1), 25–33. https://doi.org/10.1016/S0921-8009(00)00165-8.

Möller, I., Spencer, T., French, J.R.R., D.J.J., Dixon, M., 1999. Wave transformation over saltmarshes: A field and numerical modelling study from North Norfolk, England. Estuarine, Coastal and Shelf Science, 49(3), 411–426. https://doi.org/10.1006/ecss.1999.0509.

Möller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., van Wesenbeeck, B.K., Wolters, G., Jensen, K., Bouma, T.J., Lange, M.M., et al., 2014. Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geoscience, 7, 727–731. https://doi.org/ 10.1038/ngeo2251.

Morris, J.T., Sundareshwar, P.V., Nietch, C.T., Kjerfve, B., Cahoon, D.R., 2002. Responses of coastal wetlands to rising sea leve. Ecology, 83(10), 2869–2877. https://doi.org/10.1890/0012-9658(2002)083

Morris, J.T., Barber, D.C., Callaway, J.C., Chambers, R., Hagen, S.C., Hopkinson, C.S., Johnson, B.J., Megonigal, P., Neubauer, S.C., Troxler, T., et al., 2016. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. Earth’s Future, 4(4), 110–121. https://doi.org/10.1002/2015EF000334.

Mudd, S.M., Fagherazzi, S., Morris, J.T., Furbish, D.J., 2004. Flow, sedimentation, and biomass production on a vegetated salt marsh in South Carolina: Toward a predictive model of marsh morphologic and ecologic evolution. In: Fagherazzi, S., Marani, M., Blum, L.K., eds., The Ecogeomorphology of Tidal Marshes, Coastal and Estuarine Studies No. 59, American Geophysical Union, Washington, D.C., pp. 165–188.

Mudd, S.M., D’Alpaos, A., Morris, J.T., 2010. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. Journal of Geophysical Research: Earth Surface, 115(F3), F03029. https://doi.org/10.1029/2009JF001566.

Mueller, P., Schile-Beers, L.M., Mozdzer, T.J., Chmura, G.L., Dinter, T., Kuzyakov, Y., de Groot, A.V., Esselink, P., Smit, C., D'Alpaos, A., et al., 2018. Global-change effects on early-stage decomposition processes in tidal wetlands: Implications from a global survey using standardized litter. Biogeosciences, 15, 3189–3202. https://doi.org/10.5194/bg-15-3189-2018.

Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Brinson, M.M., 2018. Coastal Wetlands: An Integrated Ecosystem Approach. Elsevier

Priestas, A.M., Fagherazzi, S., 2011. Morphology and hydrodynamics of wave-cut gullies. Geomorphology, 131(1-2), 1–13. https://doi.org/10.1016/j.geomorph.2011.04.004.

Pye, K., French, P., 1993. Erosion and Accretion Processes on British Salt Marshes. Cambridge Environmental Research Consultants.

Ratliff, K.M., Braswell, A.E., Marani, M., 2015. Spatial response of coastal marshes to increased atmospheric CO2. Proceedings of the National Academy of Sciences, 112(51), 1558015584. https://doi.org/10.1073/pnas.1516286112.

Rogers, K., Woodroffe, C.D., 2014. Tidal flats and salt marshes. In: Masselink, G., Gehrels, R., eds., Coastal Environments and Global Change. John Wiley & Sons, Ltd., pp. 227–250.

Roner, M., D’Alpaos, A., Ghinassi, M., Marani, M., Silvestri, S., Franceschinis, E., Realdon, N., 2016. Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: Inferences from the Venice Lagoon, Italy. Advances in Water Resources, 93, 276–287. https://doi.org/10.1016/j.advwatres.2015.11.011.

Rupprecht, F., Möller, I., Paul, M., Kudella, M., Spencer, T., van Wesenbeeck, B.K., Wolters, G., Jensen, K., Bouma, T.J., Miranda-Lange, M., et al., 2017. Vegetation-wave interactions in salt marshes under storm surge conditions. Ecological Engineering, 100, 301–315. https://doi.org/10.1016/j.ecoleng.2016.12.030.

Sarretta, A., Pillon, S., Molinaroli, E., Guerzoni, S., Fontolan, G., 2010. Sediment budget in the Lagoon of Venice, Italy. Continental Shelf Research, 30(8), 934–949. https://doi.org/10.1016/j.csr.2009.07.002.

Schoutens, K., Heuner, M., Fuchs, E., Minden, V., Schulte-Ostermann, T., Belliard, J.P., Bouma, T.J., Temmerman, S., 2020. Nature-based shoreline protection by tidal marsh plants depends on trade-offs between avoidance and attenuation of hydrodynamic forces. Estuarine, Coastal and Shelf Science, 236, 106645. https://doi.org/10.1016/j.ecss.2020.106645.

Schwimmer, R.A., 2001. Rates and processes of marsh shoreline erosion in Rehoboth Bay, Delaware, USA. Journal of Coastal Research 17(3), 672–683. https://doi.org/10.2307/4300218.

Shepard, C.C., Crain, C.M., Beck, M.W., 2011. The Protective Role of Coastal Marshes: A Systematic Review and Meta-analysis. PLOS ONE, 6(11), e27374. https://doi.org/10.1371/journal.pone.0027374.

Signell, R.P., Chiggiato, J., Horstmann, J., Doyle, J.D., Pullen, J., Askari, F., 2010. High-resolution mapping of Bora winds in the northern Adriatic Sea using synthetic aperture radar. Journal of Geophysical Research: Oceans, 115(C4), 1–20. https://doi.org/10.1029/2009JC005524.

Silvestri, S., Defina, A., Marani, M., 2005. Tidal regime, salinity and salt marsh plant zonation. Estuarine, Coastal and Shelf Science, 62(1-2), 119–130. https://doi.org/10.1016/j.ecss.2004.08.010.

Temmerman, S., Bouma, T.J., Govers, G., Wang, Z.B., De Vries, M.B., Herman, P.M.J., 2005. Impact of vegetation on flow routing and sedimentation patterns: Three-dimensional modeling for a tidal marsh. Journal of Geophysical Research: Earth Surface, 110(F4), F04019. https://doi.org/10.1029/2005JF000301.

Temmerman, S., Meire, P., Bouma, T.J., Herman, P.M.J., Ysebaert, T., de Vriend, H.J.D., 2013. Ecosystem-based coastal defence in the face of global change. Nature, 504, 79–83. https://doi.org/10.1038/nature12859.

Tommasini, L., Carniello, L., Ghinassi, M., Roner, M., D’Alpaos, A., 2019. Changes in the wind-wave field and related salt-marsh lateral erosion: Inferences from the evolution of the Venice Lagoon in the last four centuries. Earth Surface Processes and Landforms, 44(8), 1633–1646. https://doi.org/10.1002/esp.4599.

Tonelli, M., Fagherazzi, S., Petti, M., 2010. Modeling wave impact on salt marsh boundaries. Journal of Geophysical Research: Oceans, 115(C9), C09028. https://doi.org/10.1029/2009JC006026.

Tosi, L., Teatini, P., Brancolini, G., Zecchin, M., Carbognin, L., Affatato, A., Baradello, L., 2012. Three-dimensional analysis of the Plio-Pleistocene seismic sequences in the Venice Lagoon (Italy). Journal of the Geological Society, 169(5), 507–510. https://doi.org/10.1144/0016-76492011-093.

van de Vijsel, R.C., Belzen, J., Bouma, T.J., van der Wal, D., Cusseddu, V., Purkis, S.J., Rietkerk, M., van de Koppel, J., 2019. Estuarine biofilm patterns: Modern analogues for Precambrian selforganization. Earth Surface Processes and Landforms, 4783. https://doi.org/10.1002/esp.4783.

Wang, H., van der, Wal, D., Li, X.Y., van Belzen, J., Herman, P.M.J., Hu, Z., Ge, Z.M., Zhang, L.Q., Bouma, T.J., 2017. Zooming in and out: Scale dependence of extrinsic and intrinsic factors affecting salt marsh erosion. Journal of Geophysical Research: Earth Surface, 122(7), 1455–1470. https://doi.org/10.1002/2016JF004193.

Warren, R.S., Fell, P.E., Rozsa, R., Brawley, A.H., Orsted, A.C., Olson, E.T., Swamy, V., Niering, W.A., 2002. Salt marsh restoration in Connecticut: 20 years of science and management. Restoration Ecology, 10(3), 497–513. https://doi.org/10.1046/j.1526-100X.2002.01031.x.

Xin, P., Zhou, T.Z., Lu, C.H., Shen, C.J., Zhang, C.M., D’Alpaos, A., Li, L., 2017. Combined effects of tides, evaporation and rainfall on the soil conditions in an intertidal creek-marsh system. Advances in Water Resources, 103, 1–15. https://doi.org/10.1016/j.advwatres.2017.02.014.

Young, I.R.R., Verhagen, L.A.A., 1996. The growth of fetch-limited waves in water of finite depth,Part 1: Total energy and peak frequency. Coastal Engineering, 29(1-2), 47–78. https://doi.org/10.1016/S0378-3839(96)00007-5.

Yousefi Lalimi, F., Silvestri, S., D’Alpaos, A., Roner, M., Marani, M., 2018. The spatial variability of organic matter and decomposition processes at the marsh scale. Journal of Geophysical Research: Biogeosciences, 123(12), 3713–3727. https://doi.org/10.1029/2017JG004211.

Zarzuelo, C., D’Alpaos, A., Carniello, L., Ortega-Sánchez, M., Diez-Minguito, M., Finotello, A., Losada, M., 2015. Modeling sand-mud transport in a tidally-dominated bay: Cádiz. In: Proceedings of the XXIV Congress on Differential Equation and Applications, XIV Congress on Applied Mathematics. Càdiz, pp. 1-11.

Zarzuelo, C., López-Ruiz, A., D’Alpaos, A., Carniello, L., Ortega-Sánchez, M., 2018. Assessing the morphodynamic response of human-altered tidal embayments. Geomorphology, 320, 127–141. https://doi.org/10.1016/j.geomorph.2018.08.014.

Zecchin, M., Brancolini, G., Tosi, L., Rizzetto, F., Caffau, M., Baradello, L., 2009. Anatomy of the Holocene succession of the southern Venice Lagoon revealed by very high-resolution seismic data. Continental Shelf Research, 29(10), 1343–1359.          https://doi.org/10.1016/j.csr.2009.03.006.

Zhou, Z., Olabarrieta, M., Stefanon, L., D’Alpaos, A., Carniello, L., Coco, G., 2014. A comparative study of physical and numerical modeling of tidal network ontogeny. Journal of Geophysical Research: Earth Surface, 119(4), 892–912. https://doi.org/10.1002/2014JF003092.

Similar articles
1.Si-fang DONG ; Zeng-chuan DONG ; Jun-jian MA ; Kang-ning CHEN.An Improved PSO Algorithm Based on Chaos Theory and Used in Design Flood Hydrograph[J]. Water Science and Engineering, 2010,3(2): 156-165
2. Hao WANG, Hong-wu TANG, Han-qing ZHAO, Xuan-yu ZHAO, Sheng-qi Lü.Incipient motion of sediment in presence of submerged flexible vegetation[J]. Water Science and Engineering, 2015,8(1): 63-67
3.Jing Li, Zhan-bin Li, Meng-jing Guo, Peng Li, Sheng-dong Cheng.Effects of urban grass coverage on rainfall-induced runoff in Xi’an loess region in China[J]. Water Science and Engineering, 2017,10(4): 320-325
4.Jaan Hui Pu , Awesar Hussain , Ya-kun Guo , Nikolaos Vardakastanis .Submerged flexible vegetation impact on open channel flow velocity distribution: An analytical modelling study on drag and friction[J]. Water Science and Engineering, 2019,12(2): 121-128
5.Sonja Eichentopf , Harshinie Karunarathna , José M. Alsina .Morphodynamics of sandy beaches under the influence of storm sequences: Current research status and future needs[J]. Water Science and Engineering, 2019,12(3): 221-234
6.Naveed Anjum , Norio Tanaka .Numerical investigation of velocity distribution of turbulent flow through vertically double-layered vegetation[J]. Water Science and Engineering, 2019,12(4): 319-329

Copyright by Water Science and Engineering