Water Science and Engineering 2020, 13(2) 83-94 DOI:   https://doi.org/10.1016/j.wse.2020.06.006  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Hydrological response
Climate change
Human activities
Flood control
Mann-Kendall test
Taihu Basin

Hydrological response to climate change and human activities: A case study of Taihu Basin, China

Juan Wu a, Zhi-yong Wu b,*, He-juan Lin a, Hai-ping Ji a, Min Liu a

a Bureau of Hydrology, Taihu Basin Authority of Ministry of Water Resources, Shanghai 200434, China
b College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China


Climate change and human activities have changed a number of characteristics of river flow in the Taihu Basin. Based on long-term time series of hydrological data from 1986 to 2015, we analyzed variability in precipitation, water stage, water diversion from the Yangtze River, and net inflow into Taihu Lake with the Mann-Kendall test. The non-stationary relationship between precipitation and water stage was first analyzed for the Taihu Basin and the Wuchengxiyu (WCXY) sub-region. The optimized regional and urban regulation schemes were explored to tackle high water stage problems through the hydrodynamic model. The results showed the following: (1) The highest, lowest, and average Taihu Lake water stages of all months had increasing trends. The total net inflow into Taihu Lake from the Huxi (HX) sub-region and the Wangting Sluice increased significantly. (2) The Taihu Lake water stage decreased much more slowly after 2002; it was steadier and higher after 2002. After the construction of Wuxi urban flood control projects, the average water stage of the inner city was 0.16 m to 0.40 m lower than that of suburbs in the flood season, leading to the transfer of flooding in inner cities to suburbs and increasing inflow from HX into Taihu Lake. (3) The regional optimized schemes were more satisfactory in not increasing the inner city flood control burden, thereby decreasing the average water stage by 0.04 m to 0.13 m, and the highest water stage by 0.04 m to 0.09 m for Taihu Lake and the sub-region in the flood season. Future flood control research should set the basin as the basic unit, and decreasing diversion and drainage lines along the Yangtze River can take an active role in flood control.

Keywords Hydrological response   Climate change   Human activities   Flood control   Mann-Kendall test   Taihu Basin  
Received 2019-07-08 Revised 2019-09-20 Online: 2020-06-30 
DOI: https://doi.org/10.1016/j.wse.2020.06.006

This work was supported by the National Key Research and Development Project (Grants No. 2018YFC0407900 and 2017YFC1502403), the Special Public Sector Research Program of the Ministry of Water Resources of China (Grant No. 201501014), and the National Natural Science Foundation of China (Grants No. 51779071 and 51579065).

Corresponding Authors: Zhi-yong Wu
Email: wzyhhu@gmail.com
About author:


Chen, W.J., He, B., Ma, J., Wang, J., 2016. A WebGIS-based flood control management system for small reservoirs: A case study in the lower reaches of the Yangtze River. Journal of Hydroinformatics, 19(2), 1-16. https://doi.org/10.2166/hydro.2016.049.

Deng, P.X., Xu, Y.P., Han, L.F., Yang, M.N., Yang, L., Song, S., Li, G., Wang, Y.F., 2016. Spatial-temporal evolution of the distribution pattern of river systems in the plain river network region of the Taihu Basin, China. Quaternary International, 392, 178-186. https://doi.org/10.1016/j.quaint.2015.04.010.

Deng, X.J., Xu, Y.P., Han, L.F., Wang, Y.F., 2015. Impacts of urbanization on river systems in the Taihu Region, China. Water, 7(4), 1340-1358. https://doi.org/10.3390/w7041340.

Gong, Z., Lin, Z.X., 2009. Strategy of flood control in Taihu Basin. Advances in Water Resources and Hydraulic Engineering, 1011-1016. https://doi.org/10.1007/978-3-540-89465-0_177.

Gregory, K., 2006. The human role in changing river channels. Geomorphology, 79(3-4), 172-191. https://doi.org/10.1016/j.geomorph.2006.06.018.

Gu, C.L., Hu, L.Q., Cook, I.G., 2017. China’s urbanization in 1949–2015: Processes and driving forces. Chinese Geographical Science, 27(6), 847-859. https://doi.org/10.1007/s11769-017-0911-9.

Guo, J.P., Mao, K.B., Zhao, Y.H., Lu, Z., Lu, X.P., 2018a. Impact of climate on food security in mainland china: A new perspective based on characteristics of major agricultural natural disasters and grain loss. Sustainability, 11(3), 869. https://doi.org/10.3390/su11030869.

Guo, J.W., Wang, C.H., Ma, T.F., Zeng, X.M., Yang, H., 2016. A distributed Grid-Xinanjiang model with integration of subgrid variability of soil storage capacity. Water Science and Engineering, 9(2), 97-105. http://dx.doi.org/10.1016/j.wse.2016.06.003.

Guo, M., Li, J., He, H.S., Xu, J.W., Jin, Y.H., 2018b. Detecting global vegetation changes using Mann-Kendall (MK) trend test for 1982-2015 time period. Chinese Geographical Science, 28(6), 907-919. https://doi.org/10.1007/s11769-018-1002-2.

Hasan, M.M., Wyseure, G., 2018. Impact of climate change on hydropower generation in Rio Jubones Basin, Ecuador. Water Science and Engineering, 11(2), 157-166. https://doi.org/10.1016/j.wse.2018.07.002.

Li, G.F., Xiang, X.Y., Tong Y.Y., Wang, H.M., 2013. Impact assessment of urbanization on flood risk in the Yangtze River Delta. Stochastic Environmental Research and Risk Assessment, 27(7), 1683-1693. https://doi.org/10.1007/s00477-013-0706-1.

Liu, F., Zhang Z.X., Shi, L.F., Zhao, X.L., Xu, J.Y., Yi, L., Liu, B., Wen, Q.K., Hu, S.G., Wang, X., et al., 2016. Urban expansion in China and its spatial-temporal differences over the past four decades. Journal of Geographical Sciences, 26(10), 1477-1496. https://doi.org/10.1007/s11442-016-1339-3.

Liu, L., Xu, Z.X., Reynard, N.S., Hu, C.W., Jones, R.G., 2013. Hydrological analysis for water stage projections in Taihu Lake, China. Journal of Flood Risk Management, 6(1), 14-22. https://doi.org/10.1111/jfr3.12015.

Liu, L., Xu, Z.X., 2015. Hydrological projections based on the coupled hydrological-hydraulic modeling in the complex river network region: A case study in the Taihu Basin, China. Journal of Water and Climate Change, 6(2), 386-399. https://doi.org/10.2166/wcc.2014.156.

Liu, Y., Bi, J., Lü, J.S., 2018. Future impacts of climate change and land use on multiple ecosystem services in a rapidly urbanizing agricultural basin, China. Sustainability, 10(12), 4575. https://doi.org/10.3390/su10124575.

Mann, H., 1945. Nonparametric tests against trend. Econometrica, 13(3), 245-259. https://doi.org/10.2307/1907187.

Peng, D.Z., Qiu, L.H., Fang, J., Zhang, Z.Y., 2016. Quantification of climate changes and human activities that impact runoff in the Taihu Lake Basin, China. Mathematical Problems in Engineering, 2016, 1-7. https://doi.org/10.1155/2016/2194196.

Shi, Y.L., Wang, R.S., Fan, L.Y., Li, J.S., Yang, D.F., 2010. Analysis on land-use change and its demographic factors in the original-stream watershed of Tarim River based on GIS and statistic. Procedia Environmental Sciences, 2, 175-184. https://doi.org/10.1016/j.proenv.2010.10.021.

Todorov, D., Driscoll, C.T., Todorova, S., 2018. Long-term and seasonal hydrologic performance of an extensive green roof. Hydrological Processes, 32(16), 2471-2482. https://doi.org/10.1002/hyp.13175.

Wang, L., Cai, Y.L., Chen, H.Q., Dag, D., Zhao, J.M., Yang, J., 2011a. Flood disaster in Taihu Basin, China: Causal chain and policy option analyses. Environmental Earth Sciences, 63(3), 1119-1124. https://doi.org/10.1007/s12665-010-0786-x.

Wang, R.R., Yang, G.S., 2007. Influence of land use/cover change on storm runoff: A case study of Xitiaoxi River Basin in upstream of Taihu Lake Watershed. Chinese Geographical Science, 17(4), 349-356. https://doi.org/10.1007/s11769-007-0349-6.

Wang, X.J., Zhang, J.Y., Cai, H.J., Amgad, E., Mahtab, A., He, R.M., Guan, T.S., 2011b. Spatio-temporal characteristics and driving forces of annual runoff changes in northwest of China: Taking the example of Yulin City. Urban Water Journal, 8(5), 309-323. https://doi.org/10.1080/1573062X.2011.615844.

Wang, Y.F., Xu, Y.P., Xu. Y., Song, S., Li, G., Wu, L., 2016. Changing patterns of extreme water stages in urbanizing plain river network region of Taihu Basin, China: Characteristics and causes. Hydrology and Earth System Sciences, 1-24. https://doi.org/10.5194/hess-2016-184.

Wu, J.C., Shi, X.Q., Ye, S.J., Xue, Y.Q., Zhang, Y., Yu, J., 2009. Numerical simulation of land subsidence induced by groundwater over exploitation in Su-Xi-Chang area, China. Environmental Geology, 57(6), 1409-1421. https://doi.org/10.1007/s00254-008-1419-5.

Yang, M.N., Xu, Y.P., Pan, G.B., Han, L.F., 2014. Impacts of urbanization on precipitation in Taihu Lake Basin, China. Journal of Hydrologic Engineering, 19(4), 739-746. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000852.

Ye, H.M., Yuan, X.Y., Han, L., Marip, J.B., Qin, J., 2017. Risk assessment of nitrogen and phosphorus loss in a hilly-plain watershed based on the different hydrological period: A case study in Tiaoxi watershed, Sustainability, 9(8), 1493. https://doi.org/10.3390/su9081493.

Yin, Y.X., Xu, Y.P., Chen, Y., 2009. Relationship between flood/drought disasters and ENSO from 1857 to 2003 in the Taihu Lake Basin, China. Quaternary International, 208(1-2), 93-101. https://doi.org/10.1016/j.quaint.2008.12.016.

Yuan, W., Philip, J., Yang, K., 2006. Impact of urbanization on structure and function of river system: Case study in China. Chinese Geographical Science, 16(2), 102-108. https://doi.org/10.1007/s11769-006-0002-9.

Zhang, L., Weng, Q.H., Shao, Z.F., 2017. An evaluation of monthly impervious surface dynamics by fusing Landsat and MODIS time series in the Pearl River Delta, China, from 2000 to 2015. Remote Sensing of Environment, 201, 99-114. https://doi.org/10.1016/j.rse.2017.08.036.

Zhang, Z.X., Liu, F., Zhao, X.L, Wang, X., Shi, L.F., Xu, J.Y., Yu, S.S., Wen, Q.K., Zuo, L.J., Yi, L., et al., 2018. Urban expansion in China based on remote sensing technology: A review. Chinese Geographical Science, 28(5), 727-743. https://doi.org/10.1007/s11769-018-0988-9.

Zhao, G.J., Gao, J.F., Tian P., Tian, K., Ni, G.H., 2011. Spatial-temporal characteristics of surface water quality in the Taihu Basin, China. Environmental Earth Sciences, 64(3), 809-819. https://doi.org/10.1007/s12665-011-0902-6.

Zhao, Q.J., Wen, Z.M., 2012. Integrative networks of the complex social-ecological systems. Procedia Environmental Sciences, 13, 1383-1394. https://doi.org/10.1016/j.proenv.2012.01.131.

Zhao, R.J., 1992. The Xinanjiang model applied in China. Journal of Hydrology, 135(1-4), 371-381. https://doi.org/10.1016/0022-1694(92)90096-E.

Zhou, F., Xu, Y.P., Chen, Y., Xu, C.Y., 2013. Hydrological response to urbanization at different spatio-temporal scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region. Journal of hydrology, 485, 113-125. https://doi.org/10.1016/j.jhydrol.2012.12.040.

Zhu, H.F., Ren, X.Y., Jin, Y., Yang, K., Che, Y., 2015a. Multilevel analysis of a riverscape under rapid urbanization in the Yangtze Delta Plain, China: 1965-2006. Environmental Monitoring and Assessment, 187, 711-724. https://doi.org/10.1007/s10661-015-4931-6.

Zhu, Y., Wang, W., Wang, H.J., 2015b. Runoff changes and their potential links with climate variability and anthropogenic activities: A case study in the upper Huaihe River Basin, China. Hydrology Research, 46(6), 1019-1036. https://doi.org/10.2166/nh.2015.099.

Similar articles
1.Hao-yun WU;Yan HU.Maintaining healthy rivers and lakes through water diversion from Yangtze River to Taihu lake in Taihu Basin[J]. Water Science and Engineering, 2008,1(3): 36-43
2.Qing-fang HU;Yin-tang WANG.Impact assessment of climate change and human activities on annual highest water level of Taihu Lake[J]. Water Science and Engineering, 2009,2(1): 1-15
3.Xu-ming WANG, Hai-jun LIU, Li-wei ZHANG, Rui-hao ZHANG.Climate change trend and its effects on reference evapotranspiration at Linhe Station, Hetao Irrigation District[J]. Water Science and Engineering, 2014,7(3): 250-266
4. Guang-ju ZHAO, Jun-feng GAO, Peng TIAN, Kun TIAN.Comparison of two different methods for determining flow direction in catchment hydrological modeling[J]. Water Science and Engineering, 2009,2(4): 1-15
5. Rakesh Sahukhal ,Tri Ratna Bajracharya .Modeling water resources under competing demands for sustainable development: A case study of Kaligandaki Gorge Hydropower Project in Nepal[J]. Water Science and Engineering, 2019,12(1): 19-26
6.Peng TIAN, Guang-ju ZHAO, Jing LI, Kun TIAN.Extreme value analysis of streamflow time series in the last half century in the Poyang Lake Basin, China[J]. Water Science and Engineering, 2011,4(2): 121-132
7.Lan-lan YU, Zi-qiang XIA, Jing-ku LI, Tao CAI.Climate change characteristics of Amur River[J]. Water Science and Engineering, 2013,6(2): 131-144
8.pengtian.[J]. Water Science and Engineering, 0,(): 121-132
9.Zheng GONG; Chang-kuan ZHANG; Cheng-biao ZUO; Wei-deng WU.Sediment transport following water transfer from   Yangtze River to Taihu Basin[J]. Water Science and Engineering, 2011,4(4): 431-444
10. Wei ZHANG, Shou-sheng MU, Yan-jing ZHANG, Kai-min CHEN.Seasonal and interannual variations of flow discharge from Pearl River into sea[J]. Water Science and Engineering, 2012,5(4): 399-409
11. Lin-lin CAI, Guang-wei ZHU, Meng-yuan ZHU, Hai XU, Bo-qiang QIN.Effects of temperature and nutrients on phytoplankton biomass during bloom seasons in Taihu Lake[J]. Water Science and Engineering, 2012,5(4): 361-374
12. Xiao-kang XIN, Ke-feng LI, Brian FINLAYSON, Wei YIN.Evaluation, prediction, and protection of water quality in Danjiangkou Reservoir, China[J]. Water Science and Engineering, 2015,8(1): 30-39
13. Xin-e Tao, Hua Chen, Chong-yu Xu, Yu-kun Hou, Meng-xuan Jie.Analysis and prediction of reference evapotranspiration with climate change in Xiangjiang River Basin, China[J]. Water Science and Engineering, 2015,8(4): 273-281
14. Panagiota Galiatsatoua, Christina Anagnostopouloub, Panayotis Prinosa.Modeling nonstationary extreme wave heights in present and future climate of Greek Seas[J]. Water Science and Engineering, 2016,9(1): 21-32
15.Guo-qing Wang, Jian-yun Zhang, Yue-ping Xu, Zhen-xin Bao, Xin-yue Yang.Estimation of future water resources of Xiangjiang River Basin with VIC model under multiple climate scenarios[J]. Water Science and Engineering, 2017,10(2): 87-96

Copyright by Water Science and Engineering