Water Science and Engineering 2020, 13(2) 95-105 DOI: https://doi.org/10.1016/j.wse.2020.06.001 ISSN: 1674-2370 CN: 32-1785/TV | |||||||||||||||||||||||||||||||||||||||
Current Issue | Archive | Search [Print] [Close] | |||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||
Possibilities of urban flood reduction through distributed-scale rainwater harvesting | |||||||||||||||||||||||||||||||||||||||
Aysha Akter a, b,*, Ahad Hasan Tanim b, Md. Kamrul Islam c | |||||||||||||||||||||||||||||||||||||||
a Department of Civil Engineering, Chittagong University of Engineering & Technology (CUET), Chittagong 4349, Bangladesh | |||||||||||||||||||||||||||||||||||||||
Abstract:
Urban flooding in Chittagong City usually occurs during the monsoon season and a rainwater harvesting (RWH) system can be used as a remedial measure. This study examines the feasibility of rain barrel RWH system at a distributed scale within an urbanized area located in the northwestern part of Chittagong City that experiences flash flooding on a regular basis. For flood modeling, the storm water management model (SWMM) was employed with rain barrel low-impact development (LID) as a flood reduction measure. The Hydrologic Engineering Center’s River Analysis System (HEC-RAS) inundation model was coupled with SWMM to observe the detailed and spatial extent of flood reduction. Compared to SWMM simulated floods, the simulated inundation depth using remote sensing data and the HEC-RAS showed a reasonable match, i.e., the correlation coefficients were found to be 0.70 and 0.98, respectively. Finally, using LID, i.e., RWH, a reduction of 28.66% could be achieved for reducing flood extent. Moreover, the study showed that 10% to 60% imperviousness of the subcatchment area can yield a monthly RWH potential of 0.04 to 0.45 m3 from a square meter of rooftop area. The model can be used for necessary decision making for flood reduction and to establish a distributed RWH system in the study area. | |||||||||||||||||||||||||||||||||||||||
Keywords: Low impact development (LID) SWMM HEC-RAS Remote sensing Urban flooding Inundation depth | |||||||||||||||||||||||||||||||||||||||
Received 2019-06-28 Revised 2019-12-23 Online: 2020-06-30 | |||||||||||||||||||||||||||||||||||||||
DOI: https://doi.org/10.1016/j.wse.2020.06.001 | |||||||||||||||||||||||||||||||||||||||
Fund: This work was supported by a fund on a day-to-day basis provided by the Department of Civil Engineering, Chittagong University of Engineering and Technology (CUET), Bangladesh. | |||||||||||||||||||||||||||||||||||||||
Corresponding Authors: Aysha Akter | |||||||||||||||||||||||||||||||||||||||
Email: aysha_akter@cuet.ac.bd; aysha_akter@yahoo.com | |||||||||||||||||||||||||||||||||||||||
About author: | |||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||
References: | |||||||||||||||||||||||||||||||||||||||
Ahiablame, L., Shakya, R., 2016. Modeling flood reduction effects of low impact development at a watershed scale. Journal of Environmental Management, 171, 81–91. https://doi.org/10.1016/j.jenvman.2016.01.036. Ahiablame, L.M., Engel, B.A., Chaubey, I., 2012. Effectiveness of low impact development practices: Literature review and suggestions for future research. Water, Air, & Soil Pollution, 223(7), 4253–4273. https://doi.org/10.1007/s11270-012-1189-2. Ahiablame, L.M., Engel, B.A., Chaubey, I., 2013. Effectiveness of low impact development practices in two urbanized watersheds: Retrofitting with rain barrel/cistern and porous pavement. Journal of Environmental Management, 119, 151–161. https://doi.org/10.1016/j.jenvman.2013.01.019. Akter, A., Ahmed, S., 2015. Potentiality of rainwater harvesting for an urban community in Bangladesh. Journal of Hydrology, 528, 84-93. https://doi.org/10.1016/j.jhydrol.2015.06.017. Alamgir, N.U., 2012. The Heavens Open in Ctg, 215 mm Rainfall Recorded. Daily Sun. http://www.daily-sun.com Anderson, M.L., Chen, Z.Q., Kavvas, M.L., Feldman, A., 2002. Coupling HEC-HMS with atmospheric models for prediction of watershed runoff. Journal of Hydrologic Engineering, 7(4), 312–318. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:4(312). Askarizadeh, A., Rippy, M.A., Fletcher, T.D., Feldman, D.L., Peng, J., Bowler, P., Mehring, A.S., Winfrey, B.K., Vrugt, J.A., AghaKouchak, A., et al., 2015. From rain tanks to catchments: Use of low-impact development to address hydrologic symptoms of the urban stream syndrome. Environmental Science & Technology, 49(19), 11264–11280. https://doi.org/10.1021/acs.est.5b01635. Atchison, D., Potter, K., Severson, L., 2006. Design Guidelines for Storm Water Bioretention Facilities. http://aqua.wisc.edu/publications/PDFs/stormwaterbioretention.pdf Barbosa, A.E., Fernandes, J.N., David, L.M., 2012. Key issues for sustainable urban stormwater management. Water Research, 46(20), 6787–6798. https://doi.org/10.1016/j.watres.2012.05.029. Bates, P.D., 2004. Remote sensing and flood inundation modelling. Hydrological Processes, 18(13), 2593–2597. https://doi.org/10.1002/hyp.5649. Bishop, Y., Fienberg, S., Holland, P., 1975. Discrete Multivariate Analysis-Theory and Practices, MIT Press, Cambridge. Bizier, P., 2007. Gravity Sanitary Sewer Design and Construction. American Society of Civil Engineering, Reston. https://doi.org/10.1061/9780784409008. Boukari, M., Guiraud, R., 1985. L’hydrogéologie des régions de socle de l’Afrique intertropicale: l’exemple de Dassa-Zoumè (Bénin méridional). Journal of African Earth Sciences (1983), 3(4), 491–503 (in French). https://doi.org/10.1016/S0899-5362(85)80093-2. Bowman, T., Tyndall, J.C., Thompson, J., Kliebenstein, J., Colletti, J.P., 2012. Multiple approaches to valuation of conservation design and low-impact development features in residential subdivisions. Journal of Environmental Management, 104, 101–113. https://doi.org/10.1016/j.jenvman.2012.02.006. Campisano, A., Butler, D., Ward, S., Burns, M.J., Friedler, E., DeBusk, K., Fisher-Jeffes, L.N., Ghisi, E., Rahman, A., Furumai, H., et al., 2017. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Research, 115(Supplement C), 195–209. https://doi.org/10.1016/j.watres.2017.02.056. Cluckie, I.D., Han, D., 2000. Fluvial flood forecasting. Water and Environment Journal, 14(4), 270–276. https://doi.org/10.1111/j.1747-6593.2000.tb00260.x. Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. https://doi.org/10.1016/0034-4257(91)90048-B. Czemiel Berndtsson, J., 2010. Green roof performance towards management of runoff water quantity and quality: A review. Ecological Engineering, 36(4), 351–360. https://doi.org/10.1016/j.ecoleng.2009.12.014. Damodaram, C., Giacomoni, M.H., Khedun, C.P., Holmes, H., Ryan, A., Saour, W., Zechman, E.M., 2010. Simulation of combined best management practices and low impact development for sustainable stormwater management. Journal of the American Water Resources Association, 46(5), 907–918. https://doi.org/10.1111/j.1752-1688.2010.00462.x. Das, A.K., 2014. Overnight Downpour, A Third of Ctg under Water-City People Suffer for Whole Day. The Daily Star. http://www.thedailystar.net Dietz, M.E., 2007. Low impact development practices: A review of current research and recommendations for future directions. Water, Air, and Soil Pollution, 186(1), 351–363. https://doi.org/10.1007/s11270-007-9484-z. Du, J., Qian, L., Rui, H.Y., Zuo, T.H., Zheng, D.P., Xu, Y.P., Xu, C.Y., 2012. Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China. Journal of Hydrology, 464–465, 127–139. https://doi.org/10.1016/j.jhydrol.2012.06.057. Elliott, A.H., Trowsdale, S.A., 2007. A review of models for low impact urban stormwater drainage. Environmental Modelling & Software, 22(3), 394–405. https://doi.org/10.1016/j.envsoft.2005.12.005. Evrendilek, F., Berberoglu, S., 2008. Quantifying spatial patterns of bioclimatic zones and controls in Turkey. Theoretical and Applied Climatology, 91(1), 35–50. https://doi.org/10.1007/s00704-006-0294-9. Fletcher, T.D., Shuster, W., Hunt, W.F., Ashley, R., Butler, D., Arthur, S., Trowsdale, S., Barraud, S., Semadeni-Davies, A., Bertrand-Krajewski, J.L., et al., 2015. SUDS, LID, BMPs, WSUD and more: The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12(7), 525–542. https://doi.org/10.1080/1573062X.2014.916314. Fonstad, M.A., Marcus, W.A., 2005. Remote sensing of stream depths with hydraulically assisted bathymetry (HAB) models. Geomorphology, 72(1-4), 320–339. https://doi.org/10.1016/j.geomorph.2005.06.005. Halwatura, D., Najim, M.M.M., 2013. Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environmental Modelling & Software, 46, 155–162. https://doi.org/10.1016/j.envsoft.2013.03.006. Harrington, B.W., 1989. Design and construction of in?ltration trenches. In: Design of Urban Runoff Quality Controls. ASCE, Reston, pp. 290−304. Housing and Building Research Institute (HBRI), 2015. Bangladesh National Building Code. Rainwater Drainage. Housing and Building Research Institute. Huber, W., Dickinson, R., (1988) Stormwater Management Model (SWMM) Version 4, Part A: User’s Manual. Office of Research and Development, US Environmental Research Agency, USA. Islam, S., 2009. Canal Digging Eases Waterlogging in Ctg. The Daily Star. http://www.thedailystar.net Jensen, J.R., Cowen, D.C., 2011. Remote sensing of urban/suburban infrastructure and socio-economic attributes. In: Martin Dodge, M., Kitchin, R., Perkins, C., eds., The Map Reader. John Wiley & Sons, Ltd., pp. 153–163. https://doi.org/10.1002/9780470979587.ch22. Khan, U.T., Valeo, C., Chu, A., van Duin, B., 2012. Bioretention cell efficacy in cold climates, Part 2: Water quality performance. Canadian Journal of Civil Engineering, 39(11), 1222–1233. https://doi.org/10.1139/l2012-111. Kidd, C.H.R., 1978. Rainfall-runoff processes over urban surfaces. In: Proceedings of the International Workshop at the Institute of Hydrology, Wallingford. Wallingford, p. 84. Knebl, M.R., Yang, Z.L., Hutchison, K., Maidment, D.R., 2005. Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: A case study for the San Antonio River Basin Summer 2002 storm event. Journal of Environmental Management, 75(4), 325–336. https://doi.org/10.1016/j.jenvman.2004.11.024. Liao, Z.L., He, Y., Huang, F., Wang, S., Li, H.Z., 2013. Analysis on LID for highly urbanized areas’ waterlogging control: Demonstrated on the example of Caohejing in Shanghai. Water Science and Technology, 68(12), 2559-2567. https://doi.org/10.2166/wst.2013.523. Lillesand, M.T., Kiefer, R.W., Chipman, J.W., 2008. Remote Sensing and Image Interpretation, sixth ed. Wiley, Hoboken. Liu, J.Q., Chen, H.Y., Yao, L.D., Wei, Z.Y., Lou, L.P., Shan, Y.G., Endalkachew, S., Mallikarjuna, N., Hu, B.L., Zhou, X.Y., 2016. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system. Journal of Hazardous Materials, 317, 27–35. https://doi.org/10.1016/j.jhazmat.2016.05.048. Loperfido, J.V., Noe, G.B., Jarnagin, S.T., Hogan, D.M., 2014. Effects of distributed and centralized stormwater best management practices and land cover on urban stream hydrology at the catchment scale. Journal of Hydrology, 519, 2584–2595. https://doi.org/10.1016/j.jhydrol.2014.07.007. Mcfeeters, S.K., 1996. The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714. Morsy, M.M., Goodall, J.L., Shatnawi, F.M., Meadows, M.E., 2016. Distributed stormwater controls for flood mitigaion within urbanized watersheds: Case study of Rocky Branch Watershed in Columbia, South Carolina. Journal of Hydrologic Engineering, 21(11), 050160251-10. Moya Quiroga, V., Kure, S., Udo, K., Mano, A., 2016. Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. RIBAGUA-Revista Iberoamericana del Agua, 3(1), 25–33. https://doi.org/10.1016/j.riba.2015.12.001. Palla, A., Gnecco, I., 2015. Hydrologic modeling of low impact development systems at the urban catchment scale. Journal of Hydrology, 528, 361–368. https://doi.org/10.1016/j.jhydrol.2015.06.050. Roldin, M., Fryd, O., Jeppesen, J., Mark, O., Binning, P.J., Mikkelsen, P.S., Jensen, M.B., 2012. Modelling the impact of soakaway retrofits on combined sewage overflows in a 3 km2 urban catchment in Copenhagen, Denmark. Journal of Hydrology, 452–453, 64–75. https://doi.org/10.1016/j.jhydrol.2012.05.027. Rossman, L.A., 2010. Storm Water Management Model User’s Manual, Version 5.0. U.S. Environmental Protection Agency, Cincinnati. Sarhadi, A., Soltani, S., Modarres, R., 2012. Probabilistic flood inundation mapping of ungauged rivers: Linking GIS techniques and frequency analysis. Journal of Hydrology, 458–459, 68–86. https://doi.org/10.1016/j.jhydrol.2012.06.039. Schwab, G.O., Fangmeier, D.D., Elliot, W.J., Frevert, R.K., 1993. Soil and Water Conservation Engineering, 4th ed. John Wiley & Sons, Inc., New York.Shuster, W., Rhea, L., 2013. Catchment-scale hydrologic implications of parcel-level stormwater management (Ohio USA). Journal of Hydrology, 485, 177–187. https://doi.org/10.1016/j.jhydrol.2012.10.043. Suriya, S., Mudgal, B.V., 2012. Impact of urbanization on flooding: The Thirusoolam sub watershed: A case study. Journal of Hydrology, 412–413, 210–219. https://doi.org/10.1016/j.jhydrol.2011.05.008. United States Geological Survey (USGS), 2015. EarthExplorer. http://earthexplorer.usgs.gov van der Sterren, M., Rahman, A., Ryan, G., 2014. Modeling of a lot scale rainwater tank system in XP-SWMM: A case study in Western Sydney, Australia. Journal of Environmental Management, 141, 177–189. https://doi.org/10.1016/j.jenvman.2014.02.013. Verbeiren, B., van de Voorde, T., Canters, F., Binard, M., Cornet, Y., Batelaan, O., 2013. Assessing urbanisation effects on rainfall-runoff using a remote sensing supported modelling strategy. International Journal of Applied Earth Observation and Geoinformation, 21, 92–102. https://doi.org/10.1016/j.jag.2012.08.011.
|
|||||||||||||||||||||||||||||||||||||||
Similar articles | |||||||||||||||||||||||||||||||||||||||
1.Ouyang Rulin*1, 2;Ren Liliang1;Cheng Weiming2;Yu Zhongbo1.Application of hydrological models in a snowmelt region of Aksu River Basin[J]. Water Science and Engineering, 2008,1(4): 1-13 | |||||||||||||||||||||||||||||||||||||||
2. Michael HARTNETT, Stephen NASH.An integrated measurement and modeling methodology for estuarine water quality management[J]. Water Science and Engineering, 2015,8(1): 9-19 | |||||||||||||||||||||||||||||||||||||||
3.Michael Hartnett, Stephen Nash.High-resolution flood modeling of urban areas using MSN_Flood[J]. Water Science and Engineering, 2017,10(3): 175-183 | |||||||||||||||||||||||||||||||||||||||
4.Xiao-chun ZHANG, Jing-wei WU, Hua-yi WU, Yong LI.Simplified SEBAL method for estimating vast areal evapotranspiration with MODIS data[J]. Water Science and Engineering, 2011,4(1): 24-35 | |||||||||||||||||||||||||||||||||||||||
5.Che-sheng ZHAN; Jie ZHAO; Hui-xiao WANG; Jian YIN.Quantitative estimation of land surface evapotranspiration in Taiwan based on MODIS data[J]. Water Science and Engineering, 2011,4(3): 237-245 | |||||||||||||||||||||||||||||||||||||||
6.Shalamu ABUDU, Chun-liang CUI, Muattar SAYDI, James Phillip KING.Application of snowmelt runoff model (SRM) in mountainous watersheds: A review[J]. Water Science and Engineering, 2012,5(2): 123-136 | |||||||||||||||||||||||||||||||||||||||
7.Dong-xing FAN, Yu-ling HUANG, Lin-xu SONG, De-fu LIU, Ge ZHANG,Biao ZHANG.Prediction of chlorophyll-a concentration by HJ-1 satellite imagery for Xiangxi Bay in Three Gorges Reservoir[J]. Water Science and Engineering, 2014,7(1): 70-80 | |||||||||||||||||||||||||||||||||||||||
8. Wei Xing, Peng Li, Shang-bing Cao, Li-li Gan, Feng-lin Liu, Jian-e Zuo.Layout effects and optimization of runoff storage and filtration facilities based on SWMM simulation in a demonstration area[J]. Water Science and Engineering, 2016,9(2): 115-124 | |||||||||||||||||||||||||||||||||||||||
9.Ilhan ?zgen , Jia-heng Zhao, Dong-fang Liang, Reinhard Hinkelmann.Wave propagation speeds and source term influences in single and integral porosity shallow water equations[J]. Water Science and Engineering, 2017,10(4): 275-286 | |||||||||||||||||||||||||||||||||||||||
10.Hai-bo Yang, En-chong Li, Yong Zhao, Qiu-hua Liang .Effect of water-sediment regulation and its impact on coastline and suspended sediment concentration in Yellow River Estuary[J]. Water Science and Engineering, 2017,10(4): 311-319 | |||||||||||||||||||||||||||||||||||||||
11.Ke Zhang ,Li-jun Chao , Qing-qing Wang , Ying-chun Huang , Rong-hua Liu.Using multi-satellite microwave remote sensing observations for retrieval of daily surface soil moisture across China[J]. Water Science and Engineering, 2019,12(2): 85-97 | |||||||||||||||||||||||||||||||||||||||
12.Yan-wei Sun , Christine Pomeroy , Qing-yun Li , Cun-dong Xu .Impacts of rainfall and catchment characteristics on bioretention cell performance[J]. Water Science and Engineering, 2019,12(2): 98-107 | |||||||||||||||||||||||||||||||||||||||
13.Matteo Rubinato, Andrew Nichols , Yong Peng , Jian-min Zhang , Cra.Urban and river flooding: Comparison of flood risk management approaches in the UK and China and an assessment of future knowledge needs[J]. Water Science and Engineering, 2019,12(4): 274-283 | |||||||||||||||||||||||||||||||||||||||
Copyright by Water Science and Engineering |