Water Science and Engineering 2020, 13(3) 214-222 DOI:   https://doi.org/10.1016/j.wse.2020.09.005  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
PDF(472KB)
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
Yamuna River
A. platensis
Heavy metals
Acclimatization
Biosorption
Pigments
Authors
PubMed

Acclimatization of microalgae Arthrospira platensis for treatment of heavy metals in Yamuna River

Nilesh Kumar, Shriya Hans, Ritu Verma, Aradhana Srivastava*

University School of Chemical Technology, Guru Gobind Singh Indraprastha University, New Delhi 110078, India

Abstract

Bioaccumulation and biosorption in microalgae are effective approaches for the removal of heavy metals (HMs) from river water. The objective of this study was to investigate the potential for use of acclimatized microalgae in the removal of HMs from the Yamuna River water as an acclimatizing medium. An active culture of Arthrospira platensis (A. platensis) was acclimatized to HMs up to a concentration of 100 mg/L. It was gradually exposed to increasing concentrations of HMs in five subsequent batches with a step increase of 20 mg/L to acclimatize live cells in the simulated Yamuna River water. The presence of high levels of HMs in the Yamuna River water caused growth inhibition. An empirical growth inhibition model was developed, and it predicted high threshold concentrations of HMs (210.7—424.5 mg/L), producing a positive specific growth rate of A. platensis. A. platensis also showed high average removal efficiencies of HMs, including 74.0% for Cu, 77.0% for Cd, 50.5% for Ni, 76.0% for Cr, 76.5% for Pb, and 63.5 % for Co, from HMs-enriched Yamuna River water. The findings demonstrated that the maximum specific removal amounts of Cu, Cd, Ni, Cr, Pb, and Co were 54.0, 58.0, 39.0, 62.8, 58.9, and 45.3 mg/g, respectively. The maximum yields of the value-added products chlorophyll and phycocyanin were 2.5 mg/g (in a batch of 40 mg/L for Cd) and 1054 mg/g (in a batch of 20 mg/L for Cu), respectively. Therefore, acclimatized A. platensis was proven to be a potential microalga not only for sequestration of HMs but also for production of valuable pigments.

Keywords Yamuna River   A. platensis   Heavy metals   Acclimatization   Biosorption   Pigments  
Received 2019-12-23 Revised 2020-07-01 Online: 2020-09-30 
DOI: https://doi.org/10.1016/j.wse.2020.09.005
Fund:
Corresponding Authors: Aradhana Srivastava
Email: aradhana.usct@ipu.ac.in; asriv2002@yahoo.co.in
About author:

References:

Ajayan, K.V., Selvaraju, M., Unnikannan, P., Sruthi, P., 2015. Phycoremediation of tannery waste water using microalgae Scenedesmus species. International Journal of Phytoremediation 17(10), 907-916. https://doi.org/10.1080/15226514.2014.989313.

Al-Homaidan, A.A., Alabdullatif, J.A., Al-Hazzani, A.A., Al-Ghanayem, A.A., Alabbad, A.F., 2015. Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi Journal of Biological Sciences 22(6), 795–800. https://doi.org/10.1016/j.sjbs.2015.06.010.

Ali, R.M., Hamad, H.A., Hussein, M.M., Malash, G.F., 2016. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecological Engineering 91, 317-332. https://doi.org/10.1016/j.ecoleng.2016.03.015.

Anitha, T., Kumar, P.S., Kumar, K.S., Ramkumarc, B., Ramalingamda, S., 2015. Adsorptive removal of Pb(II) ions from polluted water by newly synthesized chitosan-polyacrylonitrile blend: Equilibrium, kinetic, mechanism and thermodynamic approach. Process Safety and Environmental Protection 98, 187-197. https://doi.org/10.1016/j.psep.2015.07.012.

Bakatula, E.N., Cukrowska, E.M., Weiersbye, I.M., Mihaly-Cozmuta, L., Peter, A., Tutu, H., 2014. Biosorption of trace elements from aqueous systems in gold mining sites by the filamentous green algae (Oedogonium sp.). Journal of Geochemical Exploration 144, 492–503. https://doi.org/10.1016/j.gexplo.2014.02.017. 

Balaji, S., Kalaivani, T., Rajasekaran, C., Shalini, M., Siva, R., Singh, R.K., Akthar, M.A., 2014. Arthrospira (Spirulina) species as bioadsorbents for lead, chromium, and cadmium: A comparative study. Clean Soil Air Water 42, 1790-1797. https://doi.org/10.1002/clen.201300478.

Bennett, A., Bogorad, L., 1973. Complimentary chromatic adaptation in a filamentous blue green alga. Journal of Cell Biology 58(2), 419-435. https://doi.org/10.1083/jcb.58.2.419.

Bilal, M., Rasheed, T., Sosa-Hernández, J. E., Raza, A., Nabeel, F., Iqbal, H.M.N., 2018. Biosorption: An interplay between marine algae and potentially toxic elements: A review. Marine Drugs 16(2), 65. https://doi.org/10.3390/md16020065.

Carolin, C.F., Kumara, P.S., Saravanana, A., Joshibaa, G.J., Naushadb, M., 2017. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering 5(3), 2782-2799. https://doi.org/10.1016/j.jece.2017.05.029.

Çelekli, A., Bozkurt, H., 2011. Bio-sorption of cadmium and nickel ions using Spirulina platensis: Kinetic and equilibrium studies. Desalination 275, 141-147. https://doi.org/10.1016/j.desal.2011.02.043.

Central Pollution Control Board, Ministry of Environment & Forests, Government of India (CPCB). 2006. Water Quality Status of Yamuna River (1999–2005). Delhi, India.

Chojnacka, K., Chojnacki, A., Górecka, H., 2004. Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy 73(1-2), 147-153. https://doi.org/10.1016/j.hydromet.2003.10.003.

Chojnacka, K., 2010. Biosorption and bioaccumulation: The prospects for practical applications. Environment international 36(3), 299-307.https://doi.org/10.1016/j.envint.2009.12.001.

Collos, Y., Mornet, F., Sciandra, A., Waser, N., Larson, A., Harrison, P.J., 1999. An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures. J. Appl. Phycol. 11, 179–184. https://doi.org/10.1023/A:1008046023487.

Cracan, V., Banerjee, R., 2013. Cobalt and corrinoid transport and biochemistry, In: Banci, L., Sigel, A., Sigel, H., Sigel, R.K.O., eds., Metallomics and the Cell, Metal Ions in Life Sciences 12, Springer, New York, pp. 333-374. https://doi.org/10.1007/978-94-007-5561-1_10.

El-Sheekh, M.M., Fargh, A.A., Galal, H.R., Bayoumi, H.S., 2016. Bioremediation of different types of polluted water using microalgae. Rendiconti Lincei, 27, 401-410. https://doi.org/10.1007/s12210-015-0495-1.

Farooq, U., Khan, M.A., Athar, M., Kozinski, J.A., 2011. Effect of modification of environmentally friendly biosorbent wheat (Triticum aestivum) on the biosorptive removal of cadmium(II) ions from aqueous solution. Chemical Engineering Journal 171(2), 400-410. https://doi.org/10.1016/j.cej.2011.03.094.

Fourest, E., Roux, J.C., 1992. HM biosorption by fungal mycelial byproducts: Mechanism and influence of pH. Applied Microbiology and Biotechnology, 37, 399-403. https://doi.org/10.1007/BF00211001.

Freisinger, E., Vasak, M., 2013. Cadmium in metallothioneins. In: Sigel, A., Sigel, H., Sigel, R.K.O., eds., Cadmium: From Toxicity to Essentiality, Metal Ions in Life Sciences 11. Springer, New York, pp. 339-372. https://doi.org/10.1007/978-94-007-5179-8_11.

Gao, F., Li, C., Yang, Z.H., Zeng, G.M., Mu, J., Liu, M., Cui, W., 2016. Removal of nutrients, organic matter, and metal from domestic secondary effluent through microalgae cultivation in a membrane photobioreactor. Journal of Chemical Technology & Biotechnology 91, 2713–2719. https://doi.org/10.1002/jctb.4879.

Golterman, H.L., 1991. Direct nesslerization of ammonia and nitrate in fresh-water. Annales de Limnologie- Int. J. Limnol. 27(1), 99–101. https://doi.org/10.1051/limn/1991007.

Heiss, S., Wachter, A., Bogs, J, Cobbett, C., Rausch, T., 2003. Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. Journal of Experimental Botany 54(389), 1833-1839.https://doi.org/10.1093/jxb/erg205.

Hemlata, Fatma, T., 2009. Screening of cyanobacteria for phycobiliproteins and effect of different environmental stress on its yield. Bulletin of Environmental Contamination and Toxicology 83, 509-510. https://doi.org/10.1007/s00128-009-9837-y.

Hosikian, A., Lim, S., Halim, R., Danquah, M.K., 2010. Chlorophyll extraction from microalgae: A review on the process engineering aspects. International Journal of Chemical Engineering. 2010, 391632. https://doi.org/10.1155/2010/391632.

Hultberg, B., Andersson, A., Isaksson, A., 2001. Interaction of metals and thiols in cell damage and glutathione distribution: Potentiation of mercury toxicity by dithiothreitol. Toxicology 156(2-3), 93-100.https://doi.org/10.1016/s0300-483x(00)00331-0.

Iqbal, M., Saeed, A., Kalim, I., 2009. Characterization of adsorptive capacity and investigation of mechanism of Cu2+, Ni2+ and Zn2+ adsorption on mango peel waste from constituted metal solution and genuine electroplating effluent. Separation Science and Technology 44(15), 3770–3791. https://doi.org/10.1080/01496390903182305.

Jozefczak, M., Remans, T., Vangronsveld, J., Cuypers, A., 2012. Glutathione is a key player in metal-induced oxidative stress defenses. International Journal of Molecular Sciences 13(3), 3145-3175. https://doi.org/10.3390/ijms13033145.

Kaplan, D., 2013. Absorption and adsorption of HMs by microalgae. In: Richmond, A., Hu, Q., eds., Handbook of Microalgal Culture: Applied Phycology and Biotechnolog. Blackwell Publishing Ltd., pp. 439-611.https://doi.org/10.1002/9781118567166.ch32.

Khan, M.Y., Khan, F., 2015. Enzyme inhibition. In: Principles of Enzyme Technology. PHI Learning Pvt. Ltd., Delhi, pp. 125-151.

Kretsinger, R.H., Uversky, V.N., Permyakov, E.A., 2013. Encyclopaedia of Metalloproteins. Springer, New York, pp. 595-669. https://doi.org/10.1007/978-1-4614-1533-6.

Kumar, P.S., Ramalingam, S., Abhinaya, R.V., Thiruvengadaravi, K.V., Baskaralingam, P., Sivanesan, S., 2011. Lead(II) adsorption onto sulphuricacid treated cashew nut shell. Separation Science and Technology 46, 2436–2449. https://doi.org/10.1080/01496395.2011.590174.

Kumar, P.S., Senthamarai, C., Durgadevia, A., 2012. Adsorption kinetics, mechanism, isotherm, and thermodynamic analysis of copper ions onto the surface modified agricultural waste. Environmental Progress & Sustainable Energy 33(1), 28-37. https://doi.org/10.1002/ep.11741.

Kumar, P.S., 2013. Adsorption of lead(II) ions from simulate wastewater using natural waste: A kinetic, thermodynamic and equilibrium study. Environmental Progress & Sustainable Energy 33(1), 55-64. https://doi.org/10.1002/ep.11750.

Kumar, M., Singh, A.K., Sikandar, M., 2018. Study of sorption and desorption of Cd(II) from aqueous solution using isolated green algae Chlorella vulgaris. Applied Water Science 8(225), 1-11. https://doi.org/10.1007/s13201-018-0871-y.

Lee, Y.K., Shen, H., 2004. Basic culturing techniques. In: Richmond, A., eds., Handbook of Microalgal Culture: Applied Phycology and Biotechnology, Blackwell Science Ltd., Ames, pp. 40–56. https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/9780470995280#page=56.

Leite, L.D.S., Hoffmann, M.T., Daniel, L.A., 2019. Microalgae cultivation for municipal and piggery wastewater treatment in Brazil. Journal of Water Process Engineering 31, 1-7. https://doi.org/10.1016/j.jwpe.2019.100821.

Lodi, A., Soletto, D., Solisio, D., Converti, A., 2008. Chromium(III) removal by Spirulina platensis biomass. Chemical Engineering Journal 136(2-3), 151–155. https://doi.org/10.1016/j.cej.2007.03.032.

Lyon, S., Ahmadzadeh, H., Murry, M., 2015. Algae-based wastewater treatment for biofuel production: Processes, species, and extraction methods. In: Moheimani, N.R., McHenry, M.P., de Boer, K., Bahri, P.A., eds., Biomass and Biofuels from Microalgae. Springer International Publishing, pp. 95-115. https://doi.org/10.1007/978-3-319-16640-7_6.

Markou, G., Mitrogiannis, D., Çelekli, A., Bozkurt, H., Georgakakis, D., Chrysikopoulos, C.V., 2015. Biosorption of Cu2+ and Ni2+ by Arthrospira platensis with different biochemical compositions. Chemical Engineering Journal 259, 806-813. https://doi.org/10.1016/j.cej.2014.08.037.

Mehan, L., Verma, R., Kumar, R., Srivastava, A., 2018. Illumination wavelengths effect on Arthrospira platensis production and its process applications in River Yamuna water treatment. Journal of Water Process Engineering 23, 91-96. https://doi.org/10.1016/j.jwpe.2018.03.010.

Mehta, S.K., Gaur, J.P., 2005. Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Critical Reviews in Biotechnology 25(3), 113-152. https://doi.org/10.1080/07388550500248571.

Monod, J., 1949. The growth of bacterial cultures. Annual Review of Microbiology 3(1), 371-394. https://doi.org/10.1146/annurev.mi.03.100149.002103.

Murugesan, A., Divakaran, M., Senthilkumar, P., 2018. Enhanced adsorption of Cu2+, Ni2+, Cd2+ and Zn2+ ions onto physico-chemically modified agricultural waste: Kinetic, isotherm and thermodynamic studies. Desalination and Water Treatment 122, 176–191. https://doi.org/10.5004/dwt.2018.22771.

Nalimova, A.A., Popova, V.V., Tsoglin, L.N., Pronina, N.A., 2005. The effects of copper and zinc on Spirulina platensis growth and HM accumulation in its cells. Russian Journal of Plant Physiology 52(2), 229-234. https://doi.org/10.1007/s11183-005-0035-4

Narayana, B., Sunil, K., 2009. A spectrophotometric method for the determination of nitrite and nitrate. Eurasian J. Anal. Chem. 4(2), 204–214.

Nithya, K., Sathish, A., Kumar, P.S., Ramachandran, T., 2016. Biosorption of hexavalent chromium from aqueous solution using raw and acid-treated biosorbent prepared from Lantana camara fruit. Desalination and Water Treatment 57(52), 25097-25113. https://doi.org/10.1080/19443994.2016.1145605.

Pawlik-Skowrońska, B., 2003. Resistance, accumulation and allocation of zinc in two ecotypes of the green alga Stigeoclonium tenue Kütz. coming from habitats of different HM concentrations. Aquatic Botany 75(3), 189-198. https://doi.org/10.1016/s0304-3770%2802%2900175-4.

Prabu, D., Parthiban, R., Ponnusamy, S. N., Anbalangan, S., John, R., Titus, T., 2017. Sorption of Cu(II) ions by nano-scale zero valent iron supported on rubber seed shell. IET Nanobiotechnology 11(6), 714-724. https://doi.org/10.1049/iet-nbt.2016.0224.

Putri, L.S.E., Dewi, P.S., Dasumiati, 2017. Adsorption of Cd and Pb using biomass of microalgae Spirulina platensis. International Journal of GEOMATE 13(37), 121-126. https://doi.org/10.21660//2017.37.2582.

Randrianarison, G., Ashraf, M.A., 2017. Microalgae: A potential plant for energy production. Geology, Ecology, and Landscapes 1(2), 104-120. https://doi.org/10.1080/24749508.2017.1332853.

Romera, E., González, F., Ballester, A., Blázquez, M.L., Muñoz, J.A., 2007. Comparative study of biosorption of heavy metals using different types of algae. Bioresource Technol.  98, 3344–3353. https://doi.org/10.1016/j.biortech.2006.09.026.

Schiewer, S., Volesky, B., 2000. Biosorption processes for heavy metal removal. In: Lovely, D.R., ed., Environmental Microbe-Metal Interactions. ASM Press, Washington, D.C., pp. 329–362. https://doi.org/10.1128/9781555818098.ch14.

Schmitt, D., Muller, A., Csogor, Z., Frimmel, F.H., Posten, C., 2001. The adsorption kinetics of metal ions onto different microalgae and siliceous earth. Water Research 35(3), 779-785. https://doi.org/10.1016/s0043-1354(00)00317-1.

Shuler, M.L., Kargi, F., 2002. How cells grow. In: Bioprocess Eng. Basic Concepts, 2nd ed. Prentice Hall, Upper Saddle River, pp. 155-200.

Siripornadulsil, S., Traina, S., Verma, D.P.S., Sayre, R.T., 2002. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. The Plant Cell 14(11), 2837-2847. https://doi.org/10.1105/tpc.004853.

Solisio, C., Lodi, A., Torre, P., Converti, A., Borghi, M.D., 2006. Copper removal by dry and re-hydrated biomass. Bioresource Technology 97 (14), 1756-1760. https://doi.org/10.1016/j.biortech.2005.07.018.

Stohs, S.J., Bagchi, D., 1993. Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology & Medicine 18, 321-336.https://doi.org/10.1016/0891-5849(94)00159-h.

Suganya, S., Saravanan, A., Kumar, P.S., Yashwanthraj, M., Rajan, P.S., Kayalvizhi, K., 2017. Sequestration of Pb(II) and Ni(II) ions from aqueous solution using microalga Rhizoclonium hookeri: Adsorption thermodynamics, kinetics, and equilibrium studies. Journal of Water Reuse and Desalination 7, 214-227. https://doi.org/10.2166/wrd.2016.200.

Surkatti, R., Al-Zuhair, S., 2018. Effect of cresols treatment by microalgae on the cells composition. Journal of Water Process Engineering 26, 250-256.https://doi.org/10.1016/j.jwpe.2018.10.022.

Sydor, A.M., Zamble, D.B., 2013. Nickel metallomics: General themes guiding nickel homeostatis. In: Banci, L., Sigel, A., Sigel, H., Sigel, K.O., eds., Metallomics and the Cell, Metal Ions in Life Sciences. Springer, New York, pp. 375-416.https://doi.org/10.1007/978-94-007-5561-1_11.

Tam, N.F.Y., Wong, Y.S., 1996. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresource Technology, 57(1), 45-50. https://doi.org/10.1016/0960-8524(96)00045-4.

Tsuji, N., Hirayanagi, N., Iwabe, O., Namba, T., Tagawa, M., Miyamoto, S., Miyasaka, H., Takagi, M., Hirata, K., Miyamoto, K., 2003. Regulation of phytochelatin synthesis by Zinc and Cadmium in marine green alga Dunaleliatertiolecta. Phytochemistry 62, 453-459.https://doi.org/10.1016/s0031-9422(02)00559-9.

Udaiyappan, A.F.M., Hasan, H.A., Takriff, M.S., Abdullah, S. R. S., 2017. A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment. Journal of Water Process Engineering 20, 8-21. https://doi.org/10.1016/j.jwpe.2017.09.006.

Verma, R., Kumar, R., Mehan, L., Srivastava, A., 2016. Carbon dioxide sequestration/utilization for microalgal growth in photobioreactor. International Journal Environmental Engineering 3, 162-165. https://doi.org/10.15224/978-1-63248-084-2-42.

Verma, R., Kumar, R., Mehan, L., Srivastava, A., 2018. Modified conventional bioreactor for microalgae cultivation. Journal of Bioscience and Bioengineering 125(2), 224-230. https://doi.org/10.1016/j.jbiosc.2017.09.003.

Verma, R., Srivastava, A., 2018. Carbon dioxide sequestration and its enhanced utilization by photoautotrophic microalgae. Environmental Development 27, 95-106. https://doi.org/10.1016/j.envdev.2018.07.004.

Verma, R., Mehan, L., Kumar, R., Srivastava, A., 2019. Computational fluid dynamics analysis of hydrodynamic shear stress generated by different impeller combinations in stirred bioreactor. Biochemical Engineering Journal 151, 107312. https://doi.org/10.1016/j.bej.2019.107312.

Wu, Q.H., Liu, L., Miron, A., Klímova, B., Wan, D., Ku?a, K., 2016. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: An overview. Archives of Toxicology 90(8), 1817–1840. https://doi.org/10.1007/s00204-016-1744-5.

Yang, J.S., Cao, J., Xing, G.L., Yuan, H.L., 2015. Lipid production combined with biosorption and bioaccumulation of Cadmium, Copper, Mangenese and Zinc by oleaginous microalgae Chlorella minutissima UTEX 2341. Bioresource Technology 175, 537-544. https://doi.org/10.1016/j.biortech.2014.10.124.

Ye, J.J., Xiao, H.L., Xiao, B.L., Xu, W.S., Gao, L.X., Lin, G., 2015. Bioremediation of heavy metal contaminated aqueous solution by using red algae Porphyraleucosticta. Water Sci. Technol. 72(9), 1662–1666. https://doi.org/10.2166/wst.2015.386.

Zeraatkar, A.K., Ahmadzadeh, H., Talebi, A.F., Moheimani, N.R., McHenry M.P., 2016. Potential use of algae for heavy metal bioremediation: A critical review. Journal of Environmental Management 181, 817-831. https://doi.org/10.1016/j.jenvman.2016.06.059.

Zhou, G.J., Peng, F.Q., Zhang, L.J., Ying, G.G., 2012. Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. Environ. Sci. Pollut. Res. 19, 2918-2929. https://doi.org/10.1007/s11356-012-0800-9.

Similar articles
1.Shweta Gupta, S. K. Sharma, Arinjay Kumar.Biosorption of Ni(II) ions from aqueous solution using modified Aloe barbadensis Miller leaf powder[J]. Water Science and Engineering, 2019,12(1): 27-36
2.Muibat Diekola Yahya , Kehinde Shola Obayomi , Mohammed Bello Abdulkadir.Characterization of cobalt ferrite-supported activated carbon for removal of chromium and lead ions from tannery wastewater via adsorption equilibrium[J]. Water Science and Engineering, 2020,13(3): 202-213

Copyright by Water Science and Engineering