Water Science and Engineering 2020, 13(4) 299-306 DOI:   https://doi.org/10.1016/j.wse.2020.12.005  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
PDF(6593KB)
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
Z-scheme
Graphitic carbon nitride
MoS2
Ag3PO4
Oxygen evolution reaction
Water splitting
Authors
PubMed

Highly efficient tandem Z-scheme heterojunctions for visible light-based photocatalytic oxygen evolution reaction

Yi Lu a Xing-kai Cui b, Cheng-xiao Zhao a , Xiao-fei Yang a, b,*

a College of Science, Nanjing Forestry University, Nanjing 210037, China
b School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract

Oxygen is important in maintaining a clean and reliable water environment. Designing heterojunction photocatalysts that can evolve oxygen from water splitting through an artificial Z-scheme pathway is a promising strategy for solving environmental problems. In this study, flower-like MoS2 nanostructures were fabricated via a simple hydrothermal process, and the electrostatic-based assembly ion-exchange method was used to construct a tandem Ag3PO4/MoS2/g-C3N4 (AMC) heterojunction. The as-synthesized photocatalyst exhibited significant improvements in harvesting visible light and transporting charge carriers. Moreover, the catalyst similar to the Z-scheme with intimate interface contact exhibited high oxygen evolution performance. The oxygen evolution activity of the optimal AMC-10 catalyst was approximately 11 times that of the pristine Ag3PO4. The results indicated that addition of a small amount of the flower-like MoS2 could significantly enhance the efficiency of oxygen evolution by the heterojunction. The findings in this study provide an alternative pathway for rationally designing efficient oxygen-evolving photocatalysts to improve the quality of water and rehabilitate the water environment.

Keywords Z-scheme   Graphitic carbon nitride   MoS2   Ag3PO4   Oxygen evolution reaction   Water splitting  
Received 2020-09-03 Revised 2020-11-12 Online: 2020-12-30 
DOI: https://doi.org/10.1016/j.wse.2020.12.005
Fund:

This work was supported by the National Natural Science Foundation of China (Grant No. 21975129) and the Start-up Fund from Nanjing Forestry University.

Corresponding Authors: Xiao-fei Yang
Email: xiaofei.yang@njfu.edu.cn
About author:

References:

Cui, X.K., Tian, L., Xian, X.Z., Tang, H., Yang, X.F., 2018. Solar photocatalytic water oxidation over Ag3PO4/g-C3N4 composite materials mediated by metallic Ag and graphene. Applied Surface Science. 430, 108-115. https://doi.org/10.1016/j.apsusc.2017.07.290.

Di, T.M., Xu, Q.L., Ho, W.K., Tang, H., Xiang, Q.J., Yu, J.G., 2019. Review on metal sulphide-based Z-scheme photocatalysts. Chemcatchem. 11(5), 1394-411. https://doi.org/10.1002/cctc.201802024

Fageria, P., Sudharshan, K.Y., Nazir, R., Basu, M., Pande, S., 2017. Decoration of MoS2 on g-C3N4 surface for efficient hydrogen evolution reaction. Electrochimica Acta. 258, 1273-1283. https://doi.org/10.1016/j.electacta.2017.11.184.

Fajrina, N., Tahir, M., 2019. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. International Journal of Hydrogen Energy. 44(2), 540-577. https://doi.org/10.1016/j.ijhydene.2018.10.200.

Faraji, M., Yousefi, M., Yousefzadeh, S., Zirak, M., Naseri, N., Jeon, T.H., Choi, W., Moshfegh, A.Z., 2019. Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy & Environmental Science. 12(1), 59-95. https://doi.org/10.1039/c8ee00886h.

Hisatomi, T., Domen, K., 2019. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nature Catalysis. 2(5), 387-399. https://doi.org/10.1038/s41929-019-0242-6.

Huang, D.L., Chen, S., Zeng, G.M., Gong, X.M., Zhou, C.Y., Cheng, M., Xue, W.J., Yan, X.L., Li, J., 2019. Artificial Z-scheme photocatalytic system: What have been done and where to go? Coordination Chemistry Reviews. 385, 44-80. https://doi.org/10.1016/j.ccr.2018.12.013.

Li, R.B., Cai, M.X., Xie, Z.J., Zhang, Q.X., Zeng, Y.Q., Liu, H.J., Liu, G.G., Lü, W.Y., 2019. Construction of heterostructured CuFe2O4/g-C3N4 nanocomposite as an efficient visible light photocatalyst with peroxydisulfate for the organic oxidation. Applied Catalysis B-Environmental. 244, 974-982. https://doi.org/10.1016/j.apcatb.2018.12.043.

Li, S.Y., Zhang, M., Qu, Z.H., Cui, X., Liu, Z.Y., Piao, C.C., Li, S.G., Wang, J., Song, Y.T., 2020. Fabrication of highly active Z-scheme Ag/g-C3N4-Ag-Ag3PO4 (110) photocatalyst photocatalyst for visible light photocatalytic degradation of levofloxacin with simultaneous hydrogen production. Chemical Engineering Journal. 382, 122394. https://doi.org/10.1016/j.cej.2019.122394.

Lin, L.H., Yu, Z.Y., Wang, X.C. 2019. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angewandte Chemie. 58(19), 6164-6175. https://doi.org/10.1002/anie.201809897.

Lu, D.Z., Fan, H.Q., Kondamareddy, K.K., Yu, H.W., Wang, A.X., Hao, H.J., Li, M., Shen, J.W., 2018. Highly efficient visible-light-induced photocatalytic production of hydrogen for magnetically retrievable Fe3O4@SiO2@MoS2/g-C3N4 hierarchical microspheres. ACS Sustainable Chemistry & Engineering. 6(8), 9903-9911. https://doi.org/10.1021/acssuschemeng.8b01118.

Miseki, Y., Sayama, K., 2019. Photocatalytic water splitting for solar hydrogen production using the carbonate effect and the Z-scheme reaction. Advanced Energy Materials. 9(23), 1801294. https://doi.org/10.1002/aenm.201801294.

Mishra, A., Mehta, A., Basu, S., Shetti, N.P., Reddy, K.R., Aminabhavi, T.M., 2019. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review. Carbon. 149, 693-721. https://doi.org/10.1016/j.carbon.2019.04.104.

Peng, F.P., Ni, Y., Zhou, Q., Kou, J.H., Lu, C.H., Xu, Z.Z., 2018. New g-C3N4 based photocatalytic cement with enhanced visible-light photocatalytic activity by constructing muscovite sheet/SnO2 structures. Construction and Building Materials. 179, 315-325. https://doi.org/10.1016/j.conbuildmat.2018.05.146.

Ren, M.L., Ao, Y.H., Wang, P.F., Wang, C., 2019. Construction of silver/graphitic-C3N4/bismuth tantalate Z-scheme photocatalyst with enhanced visible-light-driven performance for sulfamethoxazole degradation. Chemical Engineering Journal. 378, 122122. https://doi.org/10.1016/j.cej.2019.122122.

Shao, B.B., Liu, X.J., Liu, Z.F., Zeng, G.M., Liang, Q., Liang, C., Cheng, Y., Zhang, W., Liu, Y., Gong, S.X., 2019. A novel double Z-scheme photocatalyst Ag3PO4/Bi2S3/Bi2O3 with enhanced visible-light photocatalytic performance for antibiotic degradation. Chemical Engineering Journal. 368, 730-745. https://doi.org/10.1016/j.cej.2019.03.013.

Tang, M.L., Ao, Y.H., Wang, C., Wang, P.F., 2020. Facile synthesis of dual Z-scheme g-C3N4/Ag3PO4/AgI composite photocatalysts with enhanced performance for the degradation of a typical neonicotinoid pesticide. Applied Catalysis B: Environmental. 268, 118395. https://doi.org/10.1016/j.apcatb.2019.118395.

Tian, L., Xian, X.Z., Cui, X.K., Tang, H., Yang, X.F., 2018. Fabrication of modified g-C3N4 nanorod/Ag3PO4 nanocomposites for solar-driven photocatalytic oxygen evolution from water splitting. Applied Surface Science. 430, 301-308. https://doi.org/10.1016/j.apsusc.2017.07.185. 

Tian, L., Yang, X.F., Cui, X.K., Liu, Q.Q., Tang, H., 2019. Fabrication of dual direct Z-scheme g-C3N4/MoS2/Ag3PO4 photocatalyst and its oxygen evolution performance. Applied Surface Science. 463, 9-17. https://doi.org/10.1016/j.apsusc.2018.08.209.

Wang, H.H., Guo, H., Zhang, N., Chen, Z.S., Hu, B.W., Wang, X.K., 2019a. Enhanced photoreduction of U(VI) on C3N4 by Cr(VI) and bisphenol a: ESR, XPS, and EXAFS investigation. Environmental Science & Technology. 53(11), 6454-6461. https://doi.org/10.1021/acs.est.8b06913.

Wang, J.F., Chen, J., Wang, P.F., Hou, J., Wang, C., Ao, Y.H., 2018a. Robust photocatalytic hydrogen evolution over amorphous ruthenium phosphide quantum dots modified g-C3N4 nanosheet. Applied Catalysis B: Environmental. 239, 578-585. https://doi.org/10.1016/j.apcatb.2018.08.048.

Wang, Y.O., Suzuki, H., Xie, J.J., Tomita, O., Martin, D.J., Higashi, M., Kong, D., Abe, R., Tang, J.W., 2018b. Mimicking natural photosynthesis: Solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chemical Reviews. 118(10), 5201-5241. https://doi.org/10.1021/acs.chemrev.7b00286.

Wang, Z., Li, C., Domen, K., 2019b. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chemical Society Reviews. 48(7), 2109-2125. https://doi.org/10.1039/c8cs00542g.

Xue, W.J., Huang, D.L., Wen, X.J., Chen, S., Cheng, M., Deng, R., Li, B., Yang, Y., Liu, X.G., 2020. Silver-based semiconductor Z-scheme photocatalytic systems for environmental purification. Journal of Hazardous Materials. 390, 122128. https://doi.org/10.1016/j.jhazmat.2020.122128.

Yang, X.F., Tian, L., Zhao, X.L., Tang, H., Liu, Q.Q., Li, G.S., 2019. Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution. Applied Catalysis B-Environmental. 244, 240-249. https://doi.org/10.1016/j.apcatb.2018.11.056. 

Yi, H., Qin, L., Huang, D.L., Zeng, G.M., Lai, C., Liu, X., Li, B.S., Wang, H., Zhou, C.Y., Huang, F., et al., 2019. Nano-structured bismuth tungstate with controlled morphology: Fabrication, modification, environmental application and mechanism insight. Chemical Engineering Journal. 358, 480-496. https://doi.org/10.1016/j.cej.2018.10.036. 

Yi, J.J., El-Alami, W., Song, Y.H., Li, H.M., Ajayan, P.M., Xu, H., 2020. Emerging surface strategies on graphitic carbon nitride for solar driven water splitting. Chemical Engineering Journal. 382, 122812. https://doi.org/10.1016/j.cej.2019.122812. 

Zhang, C., Li, Y., Shuai, D.M., Shen, Y., Xiong, W., Wang, L.Q., 2019. Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review. Chemosphere. 214, 462-479. https://doi.org/10.1016/j.chemosphere.2018.09.137. 

Zhao, C.X., Yang, X.F., Han, C.H., Xu, J.S., 2019. Sacrificial agent-free photocatalytic oxygen evolution from water splitting over Ag3PO4/MXene hybrids. Solar RRL. 4(8), 1900434. https://doi.org/10.1002/solr.201900434. 

Zhao, C.X., Tian, L., Zou, Z.Y., Chen, Z.P., Tang, H., Liu, Q.Q., Lin, Z.X., Yang, X.F., 2020. Revealing and accelerating interfacial charge carrier dynamics in Z-scheme heterojunctions for highly efficient photocatalytic oxygen evolution. Applied Catalysis B: Environmental. 268, 118445. https://doi.org/10.1016/j.apcatb.2019.118445. 

Zhou, C.Y., Huang, D.L., Xu, P., Zeng, G.M., Huang, J.H., Shi, T.Z., Lai, C., Zhang, C., Cheng, M., Lu, Y., et al., 2019. Efficient visible light driven degradation of sulfamethazine and tetracycline by salicylic acid modified polymeric carbon nitride via charge transfer. Chemical Engineering Journal. 370, 1077-1086. https://doi.org/10.1016/j.cej.2019.03.279.

Similar articles

Copyright by Water Science and Engineering