Water Science and Engineering 2020, 13(4) 307-316 DOI:   https://doi.org/10.1016/j.wse.2020.12.003  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
PDF(1998KB)
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
Sorption
Orange peel
Removal of heavy metal
Selenium-contaminated water
Sorbent
Breakthrough curve
Authors
PubMed

Batch and fixed-bed column studies of selenite removal from   contaminated water by orange peel-based sorbent

Bárbara Pérez Mora a, b, Fernando A. Bertoni a, b, María F. Mangiameli a, b, Juan C. González a, b, Sebastián E. Bellúa, b, *

a Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Rosario S2002LRK, Argentina
b Chemistry Institute of Rosario, National Council of Scientific and Technological Research, Rosario S2002LRK, Argentina

Abstract

Orange peel is a biomass derived from citrus processing with desirable properties for metal sorption. In recent years, orange peel has been used to remove various heavy metals and toxic oxyanions. Selenium (Se) is an essential trace element for mammals. However, when the concentration of selenium exceeds an umbral limit, it becomes toxic. In this study, orange peel was used to treat Se(IV)-contaminated water. A high sorption capacity of 32.5 mg/g was obtained at the temperature of 20ºC and a pH of 2.0. Hydroxyl groups took actions to bind Se(IV) to the surface of the orange peel. The sorption process was spontaneous and endothermic. A chemical sorption mechanism was involved in the removal of Se(IV). The Thomas and modified dose-response models were used to simulate the experimental breakthrough curves. The bed depth service time model was used to calculate the critical bed depth (), and the calculated  value was 1.6 cm. This study reveals that orange peel is a useful sorbent for Se(IV), and it is appropriate for the purification of Se(IV)-contaminated water.

Keywords Sorption   Orange peel   Removal of heavy metal   Selenium-contaminated water   Sorbent   Breakthrough curve  
Received 2020-02-28 Revised 2020-10-26 Online: 2020-12-30 
DOI: https://doi.org/10.1016/j.wse.2020.12.003
Fund:

This work was supported by the National Agency of Scientific and Technological Promotion (Grant No. PICT 2016-1611), Santa Fe Province Agency of Science, Technology and Innovation (Grant No. AC 2015-0005), and National University of Rosario (Grant No. BIO517).

Corresponding Authors: Sebastián E. Bellú
Email: bellu@iquir-conicet.gov.ar, sbellu@fbioyf.unr.edu.ar
About author:

References:

Abdelhafez, A.A., Li, J., 2016. Removal of Pb(II) from aqueous solution by using biochars derived from sugar cane bagasse and orange peel. J. of the Taiwan Inst. of Chem. Engin. 61, 367-375. https://doi.org/10.1016/j.jtice.2016.01.005.

Adio, S.O., Omar, M.H., Asif, M., Saleh, T.A., 2017. Arsenic and selenium removal from water using biosynthesized nanoscale zero-valent iron: A factorial design analysis. Proc. Safet. Environ. Protect. 107, 518-527. https://doi.org/10.1016/j.psep.2017.03.004.

Ahmed, M.J., Islam, M.T., Nime, M.J., 2015. A highly selective and sensitive spectrophotometric method for the determination of selenium using 2-hydroxy-1-napthaldehyde-orthoaminophenol. Anal. Methods 7(18), 7811-7823. https://doi.org/10.1039/C5AY01311A.

Alharbi, N.S., Hu, B., Hayat, T., Rabah, S.O., Alsaedi, A., Zhuang, L., Wang, X., 2020. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Front. Chem. Sci. Eng. 14, 1123-135. https://doi.org/10.1007/s11705-020-1923-z

Awual, R., Hasan, M., Khaleque, A., 2015. Efficient selenium(IV) detection and removal from water by tailor-made novel conjugate adsorbent. Sensors and Actuators B: Chemical 209, 194-202. https://doi.org/10.1016/j.snb.2014.11.010.

Bertoni, F.A., Medeot, A.C., González, J.C., Sala, L.F., Bellú, S.E., 2015. Application of green seaweed biomass for MoVI sorption from contaminated waters. Kinetic, thermodynamic and continuous sorption studies. J. of Coll. and Interf. Sci. 446, 122-132. https://doi.org/10.1016/j.jcis.2015.01.033.

Bertoni, F.A., González, J.C., García, S., Sala, L.F., Bellú, S.E., 2018. Application of chitosan in removal of molybdate ions from contaminated water and groundwater. Carboh. Polym., 180, 55-62. https://doi.org/10.1016/j.carbpol.2017.10.027.

Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Esclaleira, L.A., 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 76(5), 965-977. https://doi.org/10.1016/j.talanta.2008.05.019.

Biswas, B.K., Inoue, J.I., Inoue, K., Ghimire, K.N., Harada, H., Ohto, K., Kawakita, H., 2008. Adsorptive removal of As(V) and As(III) from water by a Zr(IV)-loaded orange waste gel. J. of Hazard. Mater. 154(1-3), 1066-1074. https://doi.org/10.1016/j.jhazmat.2007.11.030.

Bizzani, M., Menezes Flores, D.W., Colnago, L.A., Ferreira, M.D., 2017. Non-invasive spectroscopic methods to estimate orange firmness, peel thickness, and total pectin content. Microchem. J. 133, 168-174. https://doi.org/10.1016/j.microc.2017.03.039.

Blanes, P.S., Bordoni, M.E., González, J.C., García, S.I., Atria, A.M., Sala, L.F., Bellú, S.E., 2016. Application of soy hull biomass in removal of Cr(VI) from contaminated waters: Kinetic, thermodynamic and continuous sorption studies. J. of Environ. Chem. Engin. 4(1), 516-526. https://doi.org/10.1016/j.jece.2015.12.008.

Bleiman, N., Mishael, Y.G., 2010. Selenium removal from drinking water by adsorption to chitosan-clay composites and oxides: Batch and columns tests. J. Hazard. Mater. 183(1-3), 590-595. https://doi.org/10.1016/j.jhazmat.2010.07.065.

Bohart, G.S., Adams, E.Q., 1920. Some aspects of the behavior of charcoal with respect to chlorine. J. Am. Chem. Soc. 42(3), 523-544. https://doi.org/10.1021/ja01448a018.

Bruns, R.E., Scarmino, I.S., de Barros Neto, B., 2006. Statistical Design: Chemometrics. Elsevier, Amsterdam.

Carnevale, B., Blanes, P., Sala, L.F., Bellú, S.E., 2017. Removal of molybdate anions from contaminated waters by brown algae biomass in batch and continuous processes. Chem. Technol. Biotechnol. 92(6), 1298-1305. https://doi.org/10.1002/jctb.5124.

Chan, Y.T., Kuan, W.H., Chen, T.Y., Wang, M.K., 2009. Adsorption mechanism of selenate and selenite on the binary oxide systems. Water Res. 43(17), 4412-4420. https://doi.org/10.1016/j.watres.2009.06.056.

Chen, S., Yue, Q., Gao, B., Li, Q., Xu, X., 2011. Removal of Cr(VI) from aqueous solution using modified corn stalks: Characteristic, equilibrium, kinetic and thermodynamic study. Chem. Engin. J. 168(2), 909-917. https://doi.org/10.1016/j.cej.2011.01.063.

Clesceri, L.S., Greenberg, A.E. Eaton, A.D., 1998. Standard Methods for the Examination of Water and Wastewater Analysis, 21st ed. APHA, Washington, DC.

Dobrowolski, R., Otto, M., 2013. Preparation and evaluation of Fe-loaded activated carbon for enrichment of selenium for analytical and environmental purposes, Chemosphere 90(2), 683-690. https://doi.org/10.1016/j.chemosphere.2012.09.049.

Filotea, C., Ungureanu, G., Boaventura, R., Santos, S., Volf, I., Botelho, C., 2017. Green macroalgae from the Romanian coast of Black Sea: Physico-chemical characterization and future perspectives on their use as metal anions biosorbents. Proc. Safet. and Environ. Protect. 108, 34-43. https://doi.org/10.1016/j.psep.2016.06.002.

Freundlich, H.M.F., 1907. Uber die adsorption in losungen. Z. Phys. Chem. 57, 385-470. https://doi.org/10.1515/zpch-1907-5723. German language.

Frost, R.L., Cejka, J., Scholz, R., López, A., Theiss, F.L., Xi, Y., 2014. Vibrational spectroscopic study of the uranyl selenite mineral derriksite Cu4UO2(SeO3)2(OH)6.H2O. Spectrochim. Acta Part A: Molec. Biomolec. Spectrosc. 117, 473-477. https://doi.org/10.1016/j.saa.2013.08.026.

Guiza, S., 2017. Biosorption of heavy metal from aqueous solution using cellulosic waste orange peel. Ecolog. Engin. 99, 134-140. https://doi.org/10.1016/j.ecoleng.2016.11.043.

Hawari, A., Rawajfih, Z., Nsour, N., 2009. Equilibrium and thermodynamic analysis of zinc ions adsorption by olive oil mill solid residues. J. Hazard. Mater. 168(2-3), 1284-1289. https://doi.org/10.1016/j.jhazmat.2009.03.014.

Ho, Y.S., McKay, G., 1999. Pseudo-second order model for sorption processes. Proc. Biochem. 34(5), 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5.

Hu, B., Ai, Y, Jin. J., Hayat, T., Alsaedi, A., Zhuang, L., Wang, X., 2020. Efficient elimination of organic and inorganic pollutants by biochar and biocharbased materials. Biochar 2, 47-64. https://doi.org/10.1007/s42773-020-00044-4.

Kelly-Vargas, K., Cerro-Lopez, M., Reyna-Tellez, S., Bandala, E.R., Sanchez-Salas, J.L., 2012. Biosorption of heavy metals in polluted water, using different waste fruit cortex. Phys. and Chem. of the Earth 37-39, 26-29. https://doi.org/10.1016/j.pce.2011.03.006.

Kongsri, S., Janpradit, K., Buapa, K., Techawongstien, S., Chanthai, S., 2013. Nanocrystalline hydroxyapatite from fish scale waste: Preparation, characterization and application for selenium adsorption in aqueous solution. Chem. Engin. J. 215-216, 522-532. https://doi.org/10.1016/j.cej.2012.11.054.

Kuan, W.H., Lo, S.L., Wang, M.K., Lin, C.F., 1998. Removal of Se(IV) and Se(VI) from water by aluminum-oxide-coated sand. Water Res. 32(3), 915-923. https://doi.org/10.1016/S0043-1354(97)00228-5.

Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361-1403. https://doi.org/10.1021/ja02242a004.

Latorre, C.H., García, J.B., Martín, S.G., Crecente, R.M.P., 2013. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples:  Review. Anal. Chim. Acta. 804, 37-49. https://doi.org/10.1016/j.aca.2013.09.054.

Liu, Y., Liu, Y.J., 2008. Biosorption isotherms, kinetics and thermodynamics. Sep. and Purif. Technol. 61(3), 229-242. https://doi.org/10.1016/j.seppur.2007.10.002.

Lu, Z., Yu, J., Zeng, H., Liu, Q., 2017. Polyamine-modified magnetic graphene oxide nanocomposite for enhanced selenium removal. Sep. and Purif. Technol. 183, 249-257. https://doi.org/10.1016/j.seppur.2017.04.010.

Lugo-Lugo, V., Barrera-Díaz, C., Ureña-Núñez, F., Bilyeu, B., Linares-Hernández, I., 2012. Biosorption of Cr(III) and Fe(III) in single and binary systems onto pretreated orange peel. J. of Environ. Managem. 112, 120-127. https://doi.org/10.1016/j.jenvman.2012.07.009. 

Mafu, L.D., Mamba, B.B., Msagati, T.A.M., 2016. Synthesis and characterization of ion imprinted polymeric adsorbents for the selective recognition and removal of arsenic and selenium in wastewater samples. J. of Saudi Chem. Soc. 20(5), 594-605. https://doi.org/10.1016/j.jscs.2014.12.008.

Mavrov, V., Stamenov, S., Todorova, E., Chmiel, H., Erwe, T., 2006. New hybrid electrocoagulation membrane process for removing selenium from industrial wastewater. Desalination 201(1-3), 290-296. https://doi.org/10.1016/j.desal.2006.06.005.

Miller, T.M., Goodman, W.H., 1996. Removal of Selenium from Water by Complexation with Polymeric Dithiocarbamates. Nalco Chemical Company, Napervlue.

Mondal, P., Majumder, C.B., Mohanty, B., 2006. Laboratory based approaches for arsenic remediation from contaminated water: Recent developments. J. Hazard. Mater. 137(1), 464-479. https://doi.org/10.1016/j.jhazmat.2006.02.023.

Nishimura, T., Hashimoto, H., Nakayama, M., 2007. Removal of selenium(VI) from aqueous solution with polyamine-type weakly basic ion exchange resin, Sep. Sci. Technol. 42(14), 3155-3167. https://doi.org/10.1080/01496390701513107.

Olea-Mejía, O., Cabral-Prieto, A., Salcedo-Castillo, U., López-Telleza, G., Olea-Cardoso, O., López-Castañares, R., 2017. Orange peel + nanostructured zero-valent-iron composite for the removal of hexavalent chromium in water. Appl. Surf. Sci. 423, 170-175. https://doi.org/10.1016/j.apsusc.2017.06.173.

Rand, B., 1975. On the Empirical Nature of the Dubinin-Radushkevich Equation of Adsorption. J. of Coll. and Interf. Sci., 56 (2), 337-346. https://doi.org/10.1016/0021-9797(76)90259-9.

Romero-Cano, L.A., Gonzalez-Gutierrez, L.V., Baldenegro-Perez, L.A., 2016. Biosorbents prepared from orange peels using instant controlled pressure drop for Cu(II) and phenol removal. Ind. Crops and Prod. 84, 344-349. https://doi.org/10.1016/j.indcrop.2016.02.027.

Seyed Dorraji, M.S., Amani-Ghadim, A.R., Hanifehpour, S., Woo Joo, S., Figoli, A., Carraro, M., Tasselli, F., 2017. Performance of chitosan based nanocomposite hollow fibers in the removal of selenium(IV) from water. Chem. Engin. Res. and Design 117, 309-317. https://doi.org/10.1016/j.cherd.2016.10.043.

Sips, R., 1948. On the structure of a catalyst surface. J. Chem. Phys. 16, 490-495. https://doi.org/10.1063/1.1746922.

Sircar, S., 2005. Heat of adsorption on heterogeneous adsorbents. Appl. Surf. Sci. 252(3), 647-653. https://doi.org/10.1016/j.apsusc.2005.02.082.

Su, T., Guan, X., Gu, G., Wang, J., 2008. Adsorption characteristics of As(V), Se(IV), and V(V) onto activated alumina: Effects of pH, surface loading, and ionic strength. J. Colloid Interface Sci. 326(2), 347-353. https://doi.org/10.1016/j.jcis.2008.07.026.

Thomas, H.C., 1944. Heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 66, 1664-1666. https://doi.org/10.1021/ja01238a017.

Trana, H.N., You, S.J., Chao, H.P., 2016. Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study. J. of Environ. Chem. Engin. 4(3), 2671-2682. https://doi.org/10.1016/j.jece.2016.05.009.

Unnithan, M.R., Anirudhan, T.S., 2001. The kinetics and thermodynamics of sorption of chromium(VI) onto the iron(III) complex of a carboxylated polyacrylamide-grafted sawdust. Ind. Eng. Chem. Res. 40(12), 2693-2701. https://doi.org/10.1021/ie0009740.

Wang, X., Li, X., Wang, J., Zhu, H., 2020. Recent advances in carbon nitride-based nanomaterials for the removal of heavy metal ions from aqueous solution. Journal of Inorganic Materials 35(3), 260-270. https://doi.org/10.15541/jim20190436.

Xiao, W., Yan, B., Zeng, H., Liu, Q., 2016. Dendrimer functionalized graphene oxide for selenium removal. Carbon 105, 655-664. https://doi.org/10.1016/j.carbon.2016.04.057.

Yan, G., Viraraghavan, Y., Chen, M., 2001. A new model for heavy metal removal in a biosorption column. Adsorpt. Sci. Technol. 19, 25-43. https://doi.org/10.1260/0263617011493953.

Zhang, L., Liu, N., Yang, L., Lin, Q., 2009. Sorption behavior of nano-TiO2 for the removal of selenium ions from aqueous solution. J. of Hazard. Mater. 170(2-3), 1197-1203. https://doi.org/10.1016/j.jhazmat.2009.05.098.

Zhang, N., Lin, L.S., Gang, D., 2008. Adsorptive selenite removal from water using iron-coated GAC adsorbents. Water Res. 42(14), 3809-3816. https://doi.org/10.1016/j.watres.2008.07.025.

Zhang, Y., Frankenberger Jr, W.T., 2003. Removal of selenate in simulated agricultural drainage water by a rice straw bioreactor channel system, J. Environ. Qual. 32(5), 1650-1657. https://doi.org/10.2134/jeq2003.1650.

Similar articles
1.Shimaa A. Shahin, Mohamed Mossad, Moharram Fouad.Evaluation of copper removal efficiency using water treatment sludge[J]. Water Science and Engineering, 2019,12(1): 37-44
2.John Leju CELESTINO LADU; Dan-rong ZHANG.Modeling atrazine transport in soil columns with HYDRUS-1D[J]. Water Science and Engineering, 2011,4(3): 258-269
3. Zhuo-nan Huang, Xiao-ling Wang, De-suo Yang.Adsorption of Cr(Ⅵ) in wastewater using magnetic multi-wall carbon nanotubes[J]. Water Science and Engineering, 2015,8(3): 226-232
4.Shweta Gupta, S. K. Sharma, Arinjay Kumar.Biosorption of Ni(II) ions from aqueous solution using modified Aloe barbadensis Miller leaf powder[J]. Water Science and Engineering, 2019,12(1): 27-36
5.Yang XIAO, Xiao-lian ZHU, Hao-ke CHENG, Kai-jie LI, Qi LU, Dong-fang LIANG.Characteristics of phosphorus adsorption by sediment mineral matrices with different particle sizes[J]. Water Science and Engineering, 2013,6(3): 262-271
6.Min-min WANG, Li WANG.Synthesis and characterization of carboxymethyl cellulose/organic montmorillonite nanocomposites and  its adsorption behavior for Congo Red dye[J]. Water Science and Engineering, 2013,6(3): 272-282
7. Wen-sheng XU, Li CHEN, Xiao-xia TONG, Xiao-ping CHEN, Ping-cang ZHANG.Experimental study on desorption of soluble matter as influenced by cations in static water[J]. Water Science and Engineering, 2014,7(4): 384-394
8.Xin-lei ZHAO, Liang ZHU, Shi-jie BAI, Ming ZHOU, Jing QIAN,Wei WU.Performance of a double-layer BAF using zeolite and ceramic as media under ammonium shock load condition[J]. Water Science and Engineering, 2014,7(1): 81-89
9.Zhi DOU, Zhi-fang ZHOU. Lattice Boltzmann simulation of solute transport in a single rough fracture[J]. Water Science and Engineering, 2014,7(3): 277-287
10.Riffat Shaheed, Wan Hanna Melini Wan Mohtar, Ahmed El-Shafie.Ensuring water security by utilizing roof-harvested rainwater and lake water treated with a low-cost integrated adsorption-filtration system[J]. Water Science and Engineering, 2017,10(2): 115-124
11.Zhi-hong Zhang, Jia-pei Zhang, Zhan-ying Ju, Min Zhu.A one-dimensional transport model for multi-component solute in saturated soil[J]. Water Science and Engineering, 2018,11(3): 236-242
12. Xiao-dong Li , Qing-zhou Zhai .Nano mesocellular foam silica (MCFs): An effective adsorbent for removing Ni2+ from aqueous solution[J]. Water Science and Engineering, 2019,12(4): 298-306
13.Qiong Wang, Cong Zhou, Yin-jie Kuang, Zhao-hui Jiang, Min Yang.Removal of hexavalent chromium in aquatic solutions by pomelo peel[J]. Water Science and Engineering, 2020,13(1): 65-73
14.George Carleton, Teresa J. Cutright.Evaluation of alum-based water treatment residuals used to adsorb reactive phosphorus[J]. Water Science and Engineering, 2020,13(3): 181-192
15.Hui-fang Wu, Jun-ping Wang, Er-gao Duan, Wen-hua Hu, Yi-bo Dong, Guo-qing Zhang.Phosphorus removal by adsorbent based on poly-aluminum chloride sludge[J]. Water Science and Engineering, 2020,13(3): 193-201

Copyright by Water Science and Engineering