Water Science and Engineering 2009, 2(4) 1-15 DOI:   10.3882/j.issn.1674-2370.2009.04.001  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
flow direction determination
agree method
shortest path method
hydrological modeling
Taihu Basin
Guang-ju ZHAO
Jun-feng GAO
Article by Guang-ju ZHAO
Article by Jun-feng GAO
Article by Peng TIAN
Article by Kun TIAN

Comparison of two different methods for determining flow direction in catchment hydrological modeling

Guang-ju ZHAO*1, 2, Jun-feng GAO2, Peng TIAN3, Kun TIAN4


Digital elevation models (DEMs) are widely used to define the flow direction in distributed hydrological models for simulation of streamflow. In recent decades, numerous methods for flow direction determination have been applied successfully to mountainous regions. Nevertheless, some problems still exist when those methods are used for flat or gently sloped areas. The present study reviews the conventional methods of determining flow direction for such landscapes and analyzes the problems of these methods. Two different methods of determining flow direction are discussed and were applied to the Xitiaoxi Catchment, located in the Taihu Basin in southern China, which has both mountainous and flat terrain. Both the agree method and the shortest path method use drainage networks derived from a remote sensing image to determine the correct location of the stream. The results indicate that the agree method provides a better fit with the DEM for the hilly region than the shortest path method. For the flat region where the flow has been diverted and rerouted by land managers, both methods require observation of the drainage network to determine the flow direction. In order to clarify the applicability of the two methods, both are employed in catchment hydrological models conceptually based on the Xinanjiang model and implemented with PCRaster. The simulation results show that both methods can be successfully applied in hydrological modeling. There are no evident differences in the modeled discharge when using the two methods at different spatial scales.

Keywords DEM   flow direction determination   agree method   shortest path method   hydrological modeling   Taihu Basin  
Received 2010-01-07 Revised 2010-01-12 Online: 2011-10-10 
DOI: 10.3882/j.issn.1674-2370.2009.04.001
This work was supported by the Studies and Research in Sustainability Program (Deutscher Akademischer Austausch Dienst, DAAD).
Corresponding Authors: Guang-ju ZHAO
Email: guangjuzhao@yahoo.com 
About author:

Aryal, S. K., and Bates, B. C. 2008. Effects of catchment discretization on topographic index distributions. Journal of Hydrology, 359(1-2), 150-163. [doi:10.1016/j.jhydrol.2008.06.025]
Beasely, D. B., Huggins, L. F., and Monke, E. J. 1980. ANSWERS: A model for watershed planning. Transactions of the American Society of Agricultural Engineers, 23(4), 938-944.
Beven, K. J, and Kirkby, M. J. 1979. A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43-69.
Beven, K. J., Wood, E. F., and Sivapalan, M. 1988. On hydrological heterogeneity-catchment morphology and catchment response. Journal of Hydrology, 100(1-3), 353-375. [doi:10.1016/0022-1694(88)90192-8]
Callow, J. N., Van Niel, K. P., and Boggs, G. S. 2007. How does modifying a DEM to reflect known hydrology affect subsequent terrain analysis?. Journal of Hydrology, 332(1-2), 30-39. [doi:10.1016/j. jhydrol.2006. 06.020]
Chen, Y., Xu, Y. P., and Yin, Y. X. 2009. Impacts of land use change scenarios on storm-runoff generation in Xitiaoxi basin, China. Quaternary International, 208(1-2), 121-128. [doi:10.1016/j.quaint.2008.12.014]
Chow, V. T., Maidment, D. R., and Mays, L. W. 1988. Applied Hydrology. New York: McGraw-Hill.
Costa-Cabral, M. C., and Burges, S. J. 1994. Digital elevation model networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal area. Water Resources Research, 30(6), 1681-1692. [doi:10.1029/93WR03512]
Fairfield, J., and Leymarie, P. 1991. Drainage networks from grid elevation models. Water Resources Research, 27(5), 709-717. [doi:10.1029/90WR02658]
Fortin, J. P., Turcotte, R., Massicotte, S., Moussa, R., Fitzback, J., and Villeneuve, J. P. 2001. A distributed watershed model compatible with remote sensing and GIS Data, I: Description of model. Journal of Hydrologic Engineering, 6(2), 91-99. [doi:10.1061/(ASCE)1084-0699(2001)6:2(91)]
Hao, Z. C., and Li, L. 2002. The method of creating of the net of river based on DEM. Hydrology, 22(4), 8-10. (in Chinese)
Hellweger, R. 1997. Agree-DEM Surface Reconditioning System. http://www.ce.utexas.edu/prof/maidment/ gishydro/ferdi/research/agree/agree.html [Retrieved July 21, 2009].
Holmgren, P. 1994. Multiple flow direction algorithms for runoff modeling in grid based elevation models: An empirical evaluation. Hydrological Processes, 8(4), 327-334. [doi:10.1002/hyp.3360080405]
Hutchinson, M. F. 1989. A new procedure for gridding elevation and streamline data with automatic removal of spurious pits. Journal of Hydrology, 106(3-4), 211-232. [doi:10.1016/0022-1694(89)90073-5]
Jenson, S. K., and Domingue, J. O. 1988. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54(11), 1593-1600.
Jones, R. 2002. Algorithms for using a DEM for mapping catchment areas of stream sediment samples. Computers and Geosciences, 28(9), 1051-1060. [doi:10.1016/S0098-3004(02)00022-5]
Kenny, F., and Matthews, B. 2005. A methodology for aligning raster flow direction data with photogrammetrically mapped hydrology. Computers and Geosciences, 31(6), 768-779. [doi:10.1016 /j.cageo.2005.01.019]
Kenny, F., Matthews, B., and Todd, K. 2008. Routing overland flow through sinks and flats in interpolated raster terrain surfaces. Computers and Geosciences, 34(11), 1417-1430. [doi:10.1016/j.cageo.2008. 02.019]
Maidment, D. R. 2002. Arc Hydro: GIS for Water Resources. Redlands, CA: ESRI Press.
Martz, L. W., and Garbrecht, J. 1992. Numerical definition of drainage network and subcatchment areas from digital elevation models. Computers and Geosciences, 18(6), 747-761.[doi:10.1016/0098-3004(92) 90007-E]
Martz, L. W., and Garbrecht, J. 1993. Automated extraction of drainage network and watershed data from digital elevation models. Journal of the American Water Resources Association, 29(6), 901-908. [doi: 10.1111/j.1752-1688.1993.tb03250.x]
Moore, I. D., and Grayson, R. B. 1991. Terrain-based catchment partitioning and runoff prediction using vector elevation data. Water Resources Research, 27(6), 1177-1191. [doi:10.1029/91WR00090]
Nash, J. E., and Sutcliffe, J. V. 1970. River flow forecasting through conceptual models, part I: A discussion of principles. Journal of Hydrology, 10(3), 282-290. [doi:10.1016/0022-1694(70)90255-6]
O’Callaghan, J. F., and Mark, D. M. 1984. The extraction of drainage networks from digital elevation data. Computer Vision, Graphics and Image Processing, 28(3), 323-344.
Pan, F. F., Peters-Lidard, C. D., Sale, M. J., and King, A. W. 2004. A comparison of geographical information systems-based algorithms for computing the TOPMODEL topographic index. Water Resources Research, 40(6), W06303. [doi:10.1029/2004WR003069]
Quinn, P., Beven, K. J., Chevalier, P., and Planchon, O. 1991. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes, 5(1), 59-79. [doi:10.1002/hyp.3360050106]
Quinn, P., Beven, K. J., and Lamb, R. 1995. The ln(α/tanβ) index: How to calculate it and how to use it in the TOPMODEL framework. Hydrological Processes, 9(2), 161-182. [doi:10.1002/hyp.3360090204]
Saunders, W. 1999. Preparation of DEMs for use in environmental modelling analysis. Proceedings of ESRI International User Conference. San Diego, CA: ESRI Online.
Seibert, J., and McGlynn, B. L. 2007. A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Research, 43(4), W04501. [doi: 10.1029/2006WR005128]
Tarboton, D. G. 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2), 309-319. [doi:10.1029/96WR03137]
Turcotte, R., Fortin, J. P., Rousseau, A. N., Massicotte, S., and Villeneuve, J. P. 2001. Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network. Journal of Hydrology, 240(3-4), 225-242. [doi:10.1016/S0022-1694(00)00342-5]
van der Knijff, J., and De Roo, A. P. J. 2008. LISFLOOD: Distributed Water Balance and Flood Simulation Model, Revised User Manual (EUR 22166 EN/2). Luxembourg: Office for Official Publications of the European Communities.
Wechsler, S. 2007. Uncertainties associated with digital elevation models for hydrologic applications: A review. Hydrology and Earth System Sciences, 11(4), 1481-1500.
Wesseling, C. G., Karssenberg, D. J., Burrough, P. A., and Van Deursen, W. P. A. 1996. Integrated dynamic environmental models in GIS: The development of a dynamic modelling language. Transactions in GIS, 1(1), 40-48. [doi:10.1111/j.1467-9671.1996.tb00032.x]
Wolock, D. M., and McCabe, G. J. 1995. Comparison of single and multiple flow direction algorithms for computing topographic parameters in TOPMODEL. Water Resources Research, 31(5), 1315-1324. [doi:10.1029/95WR00471]
Wu, S., Li, J., and Huang, G. H. 2008. A study on DEM-derived primary topographic attributed for hydrologic applications: Sensitivity to elevation data resolution. Applied Geography, 28(3), 210-223. [doi:10.1016/ j.apgeog.2008.02.006]
Xie, S. P., Du, J. K., Luo, W. J., and Deng, M. 2006. The extraction of properties in catchment with complex terrain based on DEM. Geographical Research, 25(1), 96-102. (in Chinese)
Zhao, R. J., Zhuang, Y. L., Fang, L. R., Liu, X. R. and Zhang, Q. S. 1980. The Xinanjiang model. Hydrological Forecasting Proceedings Oxford Symposium, 129, 351-356. IAHS Publications.
Zhao, R. J. 1992. The Xinanjiang model applied in China. Journal of Hydrology, 135(1-4), 371-381. [doi: 10.1016/0022-1694(92)90096-E]
Similar articles
1.Hao-yun WU;Yan HU.Maintaining healthy rivers and lakes through water diversion from Yangtze River to Taihu lake in Taihu Basin[J]. Water Science and Engineering, 2008,1(3): 36-43
2.James Oloche OLEYIBLO; Zhi-jia LI.Application of HEC-HMS for flood forecasting in Misai and Wan’an catchments in China[J]. Water Science and Engineering, 2010,3(1): 14-22
3.Li CHENG.System dynamics model of Suzhou water resources carrying capacity and its application[J]. Water Science and Engineering, 2010,3(2): 144-155
4.Hong-jun BAO; Li-li WANG; Zhi-jia LI; Lin-na ZHAO; Guo-ping ZHANG.Hydrological Daily Rainfall-runoff Simulating with BTOPMC model and Comparison with Xin’anjiang model[J]. Water Science and Engineering, 2010,3(2): 121-131
5. Xi LI, Yi-gang WANG, Su-xiang ZHANG.Numerical simulation of water quality in Yangtze Estuary[J]. Water Science and Engineering, 2009,2(4): 40-51

Copyright by Water Science and Engineering