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Abstract: This paper presents an analytical investigation of water hammer in a hydraulic 
pressurized pipe system with a throttled surge chamber located at the junction between a tunnel and 
a penstock, and a valve positioned at the downstream end of the penstock. Analytical formulas of 
maximum water hammer pressures at the downstream end of the tunnel and the valve were derived 
for a system subjected to linear and slow valve closure. The analytical results were then compared 
with numerical ones obtained using the method of characteristics. There is agreement between them. 
The formulas can be applied to estimating water hammer pressure at the valve and transmission of 
water hammer pressure through the surge chamber at the junction for a hydraulic pipe system with a 
surge chamber.  
Key words: throttled surge chamber; water hammer; orifice; analytical formula     

 

1 Introduction 

Since the provision of a surge chamber (also referred to as a surge shaft or surge tank) in 
a pressurized pipe system can transform rapid flow change generated by closing or opening a 
valve/turbine into mass oscillation in the chamber, and lead to the reduction of water hammer 
pressure, the hydraulic characteristics of this arrangement have been extensively studied 
experimentally and theoretically (Jaeger 1977; Chaudhry 1987; Zhang and Liu 1992). These 
studies cover various types of surge chambers, including simple, throttled (orifice), differential, 
one-way, and air cushion (closed) surge chambers. Much effort so far has been devoted to the 
behavior of water hammer generated at the valve or turbine using analytical methods for pipe 
systems with surge chambers. A comprehensive review of analytical studies on pressure 
transmission in pipe systems has been conducted (Almeida and Koelle 1992). 

Earlier analytical studies (Allievi 1913) used transient flow theory to derive formulas for 
water hammer in a simple pipe of constant diameter and wall thickness with a very large 
reservoir located upstream and a valve positioned downstream. These studies have been 
extended to piping systems with throttled surge chambers or other types of surge chambers, 
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such as differential or air cushion chambers, and transmission pressure through the chamber in 
the case of rapid or instantaneous valve closure has been investigated analytically (Jaeger 
1933; Zienkiewicz and Hawkins 1954; Shima and Hino 1960; Mosonyi and Seth 1975; Wang 
and Ma 1986; Zhang and Liu 1992; Ma 1996). These analytical formulas provide a good 
design/analysis tool for engineers and researchers, particularly in the hydropower industry. All 
of these studies are based on the assumption that 

s 2 2 12 2T L a L+ ≤ 1 2 22a L a+  

where is the valve closure time; and are the length between the water surface and 
ne  a e p

 sT   1L   2L  

the tun l-penstock-chamber junction nd th enstock length, respectively; and 1a  and 2a  are 
the wave speeds in the chamber and the penstock, respectively. However, the lve/tu ine 
actually does not close instantaneously, and its normal closing time ST ( 10 s

va rb
≈ ) is at least ten 

times longer than 1 12L a (< 1 s). Therefore, the aforementioned assump  not valid and 
the analytical form  not applicable to actual hydroelectric pipe systems. This is evident 
from graphical (Escande 1949; Zienkiewicz and Hawkins 1954; Shima and Hino

tion is
ula is

 water hammer pressures at the 
dow

ical model  
s 

sisting of a diversion tunnel, a surge chamber, and a 
pens

 1960), 
numerical (Peng and Yang 1986; Prenner and Drobir 1997) and experimental (Shima and Hino 
1960; Bernhart 1975; Peng and Yang 1986; Wang and Yang 1989; Prenner and Drobir 1997) 
investigation of transmission pressure in many hydropower plants with slow valve/turbine 
closure. To the authors’ knowledge, no analytical formula has been reported for transmission 
pressures for the case of slow closure of the turbine/valve.  

This paper presents analytical formulas of maximum
nstream end of the tunnel and the valve, for a hydraulic pressurized pipe system with a 

throttled surge chamber subjected to linear and slow valve closure. In the system, a throttled 
surge chamber is located at the junction between a tunnel and a penstock, and a valve is 
positioned at the downstream end of the penstock. The analytical results are then compared 
with numerical ones obtained using the method of characteristics to demonstrate the validity 
of the formulas. 

2 Mathemat
2.1 Water hammer equation

Consider a hydraulic system con
tock, as shown in Fig. 1. The fluid is described by the piezometric head H (x, t) and 

cross-sectional average velocity V (x, t), where x is the spatial coordinate along the pipeline 
and t is the temporal coordinate. In this study, the friction loss was assumed to be small and 
was therefore neglected. The equations for water hammer are 

 0V Hg∂ ∂
t x
+ =

∂ ∂
(1) 

 

 

2 0g H V
a t x

∂ ∂
+ =

∂ ∂
 (2) 
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here a is the wave speed and g is the gravitational ac
two simultaneous partial differential equations above are 
w celeration. The general integrals of the 

 ( ) ( )0H H t x a t x aφ ψ− = − + +  (3) 

 ( ) (gV V )0 t x a t x a
a

φ ψ− = − − − +⎡ ⎤⎣ ⎦  (4) 

is a function that can be interpreted as a wave moving in the +x direction, and ψ  is a where φ  

function that can be interpreted as a wave moving in the -x direction; H0 is the itial 
e  e

 in
piezom tric head; and V0 is the initial cross-sectional average velocity in the tunnel. The xact 
forms of functions φ  and ψ  depend on particular boundary conditions. 

 
Fig. 1 Sketch of pressurized pipe system with throttled surge chamber  

and 3φ  are the transmitted waves propagating to the surge chamber and the tunnel, respectively; 2φ  ( 1φ  is the 

water hammer wav  upon closure of 
lv

e generated at the valve/turbine propagating upstream along the penstock
the va e/turbine; 1ψ , 2ψ , and 3ψ  are the reflected waves at the free water surface in the chambe  the 

unction, and the inlet of the tunnel, respectively; 1Q , 2Q , and 3Q  are the flow rates to the surge chamber, the

penstock, a  the tu el, respectively; L

r,

j  

nd nn

2.2 Tunnel

f the junction of the tunnel, 
the chamber, and the penstock (Fig. 2) are as follows: 

 heads at points B0, B1, B2, and B3, 
whic ove the orifice, the entrance to the 
surge

 reflected pressure waves from the junction are plane-fronted; 
equal to the 

wate

3 is the length of the upstream tunnel.) 

-surge chamber-penstock joint equation 

The general assumptions made in the course of the analysis o

(1) the continuity equation is valid for the system; 
(2) at any instant there are identical pressure
h denote the entrance to the surge chamber just ab
 chamber just below the orifice, the entrance to the penstock, and the entrance to the 

tunnel, respectively; 
(3) the velocity is uniformly distributed across each conduit at the junction; 
(4) incident and
(5) at any instant the difference of pressure on each side of the orifice is 
r head loss corresponding to the flow under steady conditions; 
(6) the inertia force of the water column and the friction in the surge chamber are small 

and can be neglected; 
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Fig. 2 Tunnel-surge tank-penstock joint  

(7) the upstream tunnel is long enough that, upon the full closure of he valve, the 
reflected wave 

 t

3ψ  does not a
 

rrive at the junction. 
The conditions at the junction can be expressed as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 1 0 1H t H t H t H t kQ t Q= = + 1 2 1 10t H z kQ t Q t= = + +  (5) 

 ( ) ( ) ( )3 1 2Q t Q t Q= + t  (6) 

( ) ( )10
1

1 d
t

z t Q t
f

= ∫ t  (7) 

or steady flow, they can be expressed as F
( ) ( ) ( )
( )2 0Q Q

⎪
=⎨ ( )

( )

1 2 3 0

3 0

1

0 0 0

0

0 0

H H H H

Q

Q

= = =⎧

=
⎪ =⎩

 (8) 

here is the initial pressure head at the entrance to the
orifice; is the initial flow rate in the tunnel;
w  surge chamber just above the  0H  

 0Q   ( )0H t  is the pressure head at the entrance to 
ge the sur chamber just above the orifice at time t; ( )1H t  and ( )1Q t  are the pressure head and 

the flow rate at the entrance to the surge chamber just below the orifice at time t, respectively; 
( )2H t  and ( )2Q t  are the pressure head and the ate a entrance to the penstock, 

respectively; (
flow r t the 

)3H t  and ( )3Q t  are the pressure head and the flow rate at the downstream end 
tunnel ectively; z is the increment of water level in the surge chamber; sof the , resp A  is the 

cross-sectiona  of th ge chamber; and k is the coefficient defined as follows by l area e sur
Zienkiewicz and Hawkins (1954): 

 
2

1 1 1k
0 s2 Cf A

⎛ ⎞
g

= −⎜ ⎟
⎝ ⎠

here C is the contraction coefficient of the orifice and

 (9) 

w 0f  is the area of the orifice.   

In this study we considered linear valve closure and introduced a set of dimensionless 
th , defined 

as fo
quantities of relative water hammers at the valve and e entrance of the penstock

llows: 
 ( ) ( ) ( ) ( )0 0A A At H t H Hξ = −⎡ ⎤⎣ ⎦ , ( ) ( ) ( ) ( )p 2 2 20 0h t H t H H= −⎡ ⎤⎣ ⎦  (10) 

where ( )tξ   ( )ph t  and are the relative water hammers at the valve and the entrance of the 
ens me t, respectively;tock at ti  ( )AH t  ; and ( )0AH  is the pressure head at the valve at time tp

http://www.engineeringvillage2.org.cn/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bZienkiewicz%2C+O.C.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
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itiais the in l pressure head at the valve. Allievi (1913) found that when 0 1τ μ > , where 0τ  is 
the initial degree of valve g and openin ( ) ( )2 0 0 22a Q gH fμ = , with 2f  being th
cross-sectional area of the penstock, the maximum value of 

e 
ξ  occurs a . This is so 

referred to as final water hammer. Most hydro e condit of 0 1τ μ > , 
but there are some very high-head power plants (≥  300 m) that do not. U ull closure of 
the valve, the pressure head at the valve begins to decrease and then oscillate in the p f 

2

t st T=  al
power plan tisfy thts sa ion 

pon f
eriod o

θ , as illustrated in Fig. 3 (the area of the orifice  22.619 5 mis 2), and a decompression wave 
begins to move upstream. The pressure head at the junction begins to oscillate at s 2t T θ= + , 

llustrated in Fig. 4. The maximum relative water hammers as i ( )tξ  and ( )ph t  occur at time 
instants s 2T θ+  and sT , respectively, i.e., ( )*

p p s 2h h T θ= +  and ( )*
sTξ ξ= . I e 

mentioned that for a hydroelectric power plant with a very long diversion tunnel, the amplitude 
of mass oscil n 

*

t should b

latio Z  in the surge chamber  foll  1933): 

 

can be estimated as ows (Jaeger

* 3
0

3 s

L
Z Q

gf A
=  (11) 

 3f  where is the cross-sectional area of the tunnel. 
lation

It is indicated in Eq. (11) that mass 
oscil and ( ) *

2 p0H h   
*Z  w ceed ( ) *0AH ξ  

*for a certain range of , so that 3L  ill ex  and ξ
*
ph  mig  not be the largest in this condition. The second peak of the water hammer wave in 

Fig. 4 is la r than the fir and th of 

ht
rge st peak, e value ( )2H t  at time s 2T nθ+  is larg than 

t at time (
er 

tha )s 1 2T n θ+ − . This is due to the fact that the increment of the water level in the 
surge chamber exceeds the decrement of transmission re. Fig. 5 sh he variation of 
the incremen r level subtracted from the pressure head at the entrance of the 
penstock with time. It can be seen from Fig. 5 that the value 

 pressu ows t
t of the wate

( ) ( )2 2 0H t H z− −  increases 
significantly with time, reaches its maximum at time s 2T θ+ , and then oscillates. The peak 
value of ( ) ( )2 2 0H t H z− −  decreases slowly after time sT 2θ+  that the 
maximum transmission water hammer is reached at tim

. This shows
e s 2T θ+ . 

 
           Fig. 3 Pressure head at valve            Fig. 4 Pressure head at bottom of surge chamber 
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Fig. 5 Transmitted pressure minus increment of water level in chamber 

The period of mass oscillation in the surge chamber (100 s to 500 s) is much larger than 
the time taken for valve closure  (10 s), so it is in the time interval sT ( )s0 2t T θ≤ ≤ + , with 

( )1 0Q t ≥ , as shown in Fig. 6. Therefore, at s 2t T θ= +  the absolute value sign in Eq. (5) can 
be removed. 

 
Fig. 6 Flow rate into surge chamber 

Provided that the diversion tunnel is long enough, the reflected pressure wave 3ψ  has not 
yet arrived at the junction when the valve has just fully closed. This yields 
 3 0ψ =  (12) 

Substituting Eq. (12) into Eqs. (3) and (4), the following equations are obtained: 
 ( ) ( )3 3 0H t H 3φ− =  (13) 
 ( ) ( ) ( )3 3 30Q t Q u 3φ− = −  (14) 

where 3 3 3u gf a= 3a;  is the wave speed in the tunnel. 
Combining Eqs. (13) and (14) yields 

 ( ) ( ) ( ) ( )3 0 3 3 3 0 3 0 p0Q t Q u H t H Q u H h t= − − = −⎡ ⎤⎣ ⎦  (15) 

It is indicated from Eq. (15) that ( )3Q t  decreases with increasing ( )3H t , and that there is a 
linear relation between ( )3Q t  and ( )3H t . 

Transforming Eqs. (1) and (2) into four ordinary differential ones using the method of 
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characteristics, C+ equations (the positive direction of the x-axis is A pointed to B) are obtained: 

 2

2

d d 0
d d

d
d

g H V
a t t
x a
t

⎧ + =⎪⎪
⎨
⎪ =⎪⎩

 (16) 

Integrating Eq. (16) along a C+ line from A to P (Fig. 7) yields 

 ( )( )
s

s

0 p 2
2 2

1 0 0A T
T

H h Q H
u

θ

ξ
+

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
−  (17) 

where 2 2u gf a= 2 . 
Since the penstock is usually short (< 700 m), 

the water head loss in the penstock, ( )wm 0H , is 
small compared with the pressure head, and can 
be neglected. In this study, ( )0AH  was 
approximately equal to , which was expressed as  0H

( ) ( ) ( ) ( )2 wm 0 wm0 0 0 0AH H H H H H= − = − ≈ 0  

 

Fig. 7 Characteristic line of penstock 

(2 s 2Q T θ+ )  can be obtained by 
transforming Eq. (17): 

 ( ) ( )* *
2 s 2 0 p2Q T u H hθ ξ+ = −      (18) 

Combining Eqs. (6), (15), and (18) yields 
 ( ) ( )

s 2 s 2

* *
1 3 2 0 3 0 p 2 0T L a T L a

Q Q Q Q u H h u H ξ
+ +

= − = − + − *
ph  (19) 

The front of pressure wave 2φ  arrives at B at 2t θ= . Meanwhile, ( )1Q t  and z begin to 
increase from 0. According to the continuity equation for the surge chamber, 

 ( )s s

s 2 2

2 2

1 32 2
s s

1 1d
T T

T L a 2 dz Q t Q Q t
A A

θ θ

θ θ

+ +

+
= = −∫ ∫  (20) 

Since ( )1Q t , ( )2Q t , and ( )3Q t  are undetermined functions, their integrals, ( )s 2z T θ+ , are 
undetermined. In our study, the valve was assumed to close linearly. In this condition  

can be viewed approximately as a linear function of t for 

( )1Q t
( )s 2t Tθ ≤ ≤ +θ . Therefore, 

( s 2z T θ+ )  can be approximated by 

 ( ) ( ) (s

s

2

1 1 1 s s 1 s2 2
s

1 1 1d 2 2
2 2

T

T ) s2z Q t Q Q T T Q T T
A

θ

θ θ
θ θ θ

+

+
⎡ ⎤= ≈ + + = +⎣ ⎦∫  (21) 

Eq. (21) expresses ( )s 2z T θ+  as a function of ( )1 s 2Q T θ+ , which can be determined by 

*ξ and 
*
ph .  

Combining Eqs. (19) and (21) yields 

 (
s 2

* *s s 3 0 s 2 0
0 p

s s s2 2 2T L a

T T u H T u H )*
pz Q h

A A A
ξ

+
= − + − h  (22) 

Substituting Eqs. (19) and (22) into Eq. (5), the following equation is obtained: 
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( )

( )

* * *s 3 0 s s 2 0
0 p p 0 p

s s s

2
* * *

0 3 0 p 2 0 p

2 2 2

     

T u H T T u H
H h h Q h

A A A

k Q u H h u H h

ξ

ξ

+ − −

⎡ ⎤= − + −⎣ ⎦

*−
 (23) 

2.3 Interlocking equations of water hammer in penstock 

2.3.1 Improved interlocking equations for conduit with surge chamber 
In previous studies, the pressure head ( )2H t  at the upstream boundary was assumed to 

be constant in the course of deriving interlocking equations of water hammer. This is 
reasonable for a simple surge chamber located upstream with an infinitely large area. However, 
such interlocking equations are not applicable to hydraulic pipe problems with a throttled 
surge chamber, as ( )2H t  varies significantly with time upon closure of the valve. Modified 
interlocking equations should be derived for pressurized conduits with a throttled surge 
chamber located upstream. 

Eq. (3) at the upstream end of the penstock (point BB2) can be written as 
( ) ( ) ( ) ( )2 2 2 2 2 2 20H t H t L a t L aφ ψ− = − + + 2  

which, using ( ) ( ) ( ) ( )p 2 2 20 0h t H t H H= −⎡ ⎤⎣ ⎦ , ( )2 00H = H , and 2 2 2L a θ= , can be 
transformed into  
 ( ) ( ) ( )2 22 2t t Hφ θ ψ θ− = − + + 0 ph t  (24) 

Substituting 2it t θ= −  into Eq. (24), the following equation is obtained: 
( ) ( ) ( ) ( ) ( )2 2 2 2 0 p2 2 2i i it t t t H h tφ θ φ θ θ φ θ ψ θ− = − − = − = − + − 2i  

which can be written in the general form 
 ( ) ( ) ( )2 2 0 p 2t t H h tψ φ θ θ= − − + −  (25) 

or in the form 
  (26) 1

2 2 0 p
i i iH hψ φ −= − + 1/ 2−

The superscript i denotes the value of the function at time iθ , e.g., 2 2 ( )i iψ ψ θ= . At the 
downstream end of the penstock (point A), Eqs. (3) and (4) can be written as 
 0

2
i i
A AH H 2

iφ ψ= + +  (27) 

 ( )0
2 2 2

i
A AV V g a i iφ ψ= − −  (28) 

where  and  are the flow velocity and pressure head at the downstream end of the 
penstock, respectively. 

AV AH

Substituting Eq. (26) into Eqs (27) and (28) yields 
  (29) 0 1

2 2 0 p
i i i i
A AH H H hφ φ − −= + − + 1 1/ 2+

 ( )0 1
2 2 2 0 p

i i i
A AV V g a H hφ φ − − += − + − 1 1/ 2i  (30) 

After manipulations, the following equations can be obtained: 
 ( )1 0 2 1 1/ 2

2 2 0 p p2i i i i i i
A A AH H H H h hφ φ− − − ++ = + − + + 2 1/ 2− +  (31) 

 ( ) ( )1 2 1 1/ 2 2 1/ 2
2 2 2 0 2 p p

i i i i i i
A AV V g a gH a h hφ φ− − − +− = − − + − − +  (32) 
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By eliminating the term ( )2
2 2
i iφ φ −−  from Eqs. (31) and (32), the following equation is obtained: 

 

( )
( )

( )

1 0 1 0 0 1/ 2
2 0 p

1 2 0 2 1 1 1/ 2
2 0

1 0 1
2 0

2

2 2

                               

2 2

A A A A

A A A A A

i i i i i
A A A A A

H H a g V V H h

H H H a g V V H h

H H H a g V V H h

+

+

− −

⎧ − = − − +
⎪
⎪ + − = − − +⎪
⎨
⎪
⎪

+ − = − − +⎪⎩

M

p

1 1/ 2
p
− +

 (33) 

When pressure head at the entrance to the surge chamber just below the orifice is constant, 
i.e., , Eq. (33) becomes identical to the interlocking equations derived by Allievip ( ) 0h t ≡  

(1913). It can be seen that Allievi’s interlocking equations are a special case of Eq. (33). 
To generalize, the improved interlocking equations may be expressed in dimensionless 

terms by defining the following quantities: ( )0
0

i i
A AH H Hξ = − , 0

i
AV V v= i

)
, and 

(2 0 02a V gHμ = . Substituting these terms into Eq. (33) yields the following equation: 

 

( )
( )

( )

1 1 0 0 1/ 2
p

1 2 2 1 1 1/ 2
p

1 1
p

2 2

2 2

                       

2 2i i i i i

v v h

v v h

v v h

ξ μ

ξ ξ μ

ξ ξ μ

+

+

− −

⎧ = − − +
⎪
⎪ + = − − +⎪
⎨
⎪
⎪

+ = − − +⎪⎩

M
1 1/ 2− +

 (34) 

2.3.2 Interlocking equations in condition of final water hammer 
For the system with a valve located at the downstream end of the penstock, the Bernoulli 

equation is assumed to be valid (Wylie and Streeter 1993): 
 ( ) ( ) ( )1v t t tτ ξ= +  (35) 

where ( ) ( ) ( )0A Av t V t V= , and ( )tτ  is the relative valve opening.  
Substituting this into Eq. (34) yields the following equation:  

 ( )
1

1 1
p1 1

2

n n
n n n n nhξ ξμ τ ξ τ ξ

−
− − +

+ − + = − + 1/ 2−  (36) 

The hydraulic system mentioned before (Figs. 4 and 5), in which 1.4 sθ =  and , is 
considered, and some distinguishing features of the functions 

s 13.0 sT =

ph  and ξ , which will be used 
for deriving equations in the next section, are found:  

(1) The curve of ( )tξ  turns at time  and s0,  ,  ,Tθ sT nθ+  (n = 1, 2, 3…), and the curve 
of ( )ph t  turns at time ( )s 1 2T n θ+ + , (n = 1, 2, 3…). 

(2) Provided that closure of the valve is continuous and differentiable with respect to time, 
( )tξ  and  are continuous and differentiable with respect to time in any time intervals 

between any two successive points mentioned above. 
( )ph t

Since ξ  is continuous and differentiable in the time interval [ ]s,t Tθ∈ , employing the 
Taylor expansions of 1n nτ ξ+  and 

1 1n 1nτ ξ− + −
 to the second order at time instant 

( )1 2n θ−  yields the following equations: 
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( ) ( )

( )

22

21/ 2
1/ 2 1/ 2

33

3

d 1 d1 1 1 1
d 2 2 d 2

1 d                   1
6 d 2

n n

n
n n

t t

t
α

θ θτ ξ τ ξ τ ξ τ ξ

θτ ξ

−
− −

⎛ ⎞ ⎛ ⎞+ = + + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

+

( ) ( )

( )

22
1 1

21/ 2
1/ 2 1/ 2

33

3

d 1 d1 1 1 1
d 2 2 d 2

1 d                       1
6 d 2

n n

n
n n

t t

t
β

θ θτ ξ τ ξ τ ξ τ ξ

θτ ξ

− −

−
− −

⎛ ⎞ ⎛ ⎞+ = + + + − + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

+

 

where [ ]1, 1/ 2n nα ∈ − − , and [ ]1/ 2,n nβ ∈ − . 

Subtraction of the two equations above yieds the following equation: 

 

( ) ( ) ( )

( )

33 3
1 1

3 3
1/ 2

1/ 2

3

3

d 1 d d1 1 1 1 1
d 6 d d

d 1 d                                       1
d d2 1

1 d                                          1
6 d

n n n n

n

n

t t t

t t

t

α β

α

2
θτ ξ τ ξ τ ξ θ τ ξ τ ξ

τ ξθ ξ τ
ξ

τ ξ

− −

−

−

⎡ ⎤ ⎛ ⎞+ − + = + + + + +⎢ ⎥ ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎛ ⎞
= + + +⎜ ⎟⎜ ⎟+⎝ ⎠

+ + ( )
33

3

d 1
d 2t β

θτ ξ
⎡ ⎤ ⎛ ⎞+⎢ ⎥ ⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

 (37) 

At  and st T≈ 0τ ≈ , Allievi (1913) found that final water hammer occurs for . This 
indicates that the maximum water hammer pressure occurs at :  

0 1τ μ >

sT
1 d 0

d2 1 t
ξτ

ξ
≈

+
 

For linear valve closure,  
0

s

d
dt T

ττ
= −  

Magnitude analysis of the right-side term in Eq. (37) yields the following equations: 

 

( )

( ) ( ) ( )

1 0
s

33 3 3

2 03 3 3
s

d 1 1
d

1 d d1 1
6 d d 2

R O O
t T

R O
t t Tα β

τ θθ ξ τ ξ

θ θ 1Oτ ξ τ ξ τ

⎧ ⎛ ⎞
= + = +⎪ ⎜ ⎟

⎝ ⎠⎪
⎨ ⎡ ⎤ ⎛ ⎞⎛ ⎞⎪ = + + + =⎢ ⎥ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎢ ⎥ ⎝ ⎠⎣ ⎦⎩

ξ+

 (38) 

In hydro-electric power plants, s 1 10Tθ ≈ . It can be seen that R2 is two orders of magnitude 
smaller than R1, and can be neglected. Therefore, Eq. (37) can be rewritten as 

 0
1 1

s

1 1 1n n n n nT 1 2
τ θ

τ ξ τ ξ ξ− −+ − + ≈ − + −  (39) 

Using the Taylor expansions of nξ  and 1nξ −  at time ( 1 2)n θ−  to the first order and then 
adding them to each other leads to the following equation: 
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1 21
2 2

1 d d
2 4 d d

nn n

t tκ λ

ξξ ξ
2

ξ ξ θ
μ μ μ

−−
⎛ ⎞+ ⎛ ⎞= + +⎜ ⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

⎟⎟  (40) 

where [ ]1, 1/ 2n nκ ∈ − −  and [ ]1/ 2,n nλ ∈ − S.  and  are set as follows:  2S1

( )
 

( )

1 2
1

22 2 2

2 2 2 2
s

1

1 d d 1
4 d d 2

nS O O

S O O
t t Tκ λ

ξ
ξ

μ μ

ξ ξ θ θ ξ
μ μ

−⎧ ⎛ ⎞
= =⎪ ⎜ ⎟

⎝ ⎠⎪
⎨ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎪ = + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎪ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎩

 (41) 

2S  is two orders of magnitude smaller than , and can be neglected. Therefore, Eq. (40) can 
be rewritten as  

1S

 1 21

2
nn n
ξξ ξ

μ μ
−−+

≈  (42) 

Substituting Eqs. (42) and (39) and introducing a dimensionless Allievi constant 
0 2 0

2 0 s

L Q
f gH T
τ

σ =  into Eq. (36) yields the following equation:  

 1/ 2 1/ 2 1/ 2
p1 n n nhσ ξ ξ− −− + = − + −  (43) 

Eq. (43) is valid when sn Tθ ≈ . It can be viewed as the fitting curve of ξ  and ph  in the 
adjacent time interval of . Eq. (43) is approximately valid at , yielding sT sT
 ( )* *

p s1 h Tσ ξ ξ− + = − +  (44) 

Eq. (44) indicates the relation between ( )p sh T  and 
*ξ . Because ( )ph t  is a smooth function in 

a time interval ( )s0 ~ 2T θ+ , Taylor expansion of ( )p sh T  at time s 2T θ+  to a first order 
term yields 

 
s

22
p p*

p s p 2
/ 2

d d1( )
2 d 2 d 2T

h h
h T h

t t
θ γ

θ

+

⎛ ⎞= − + ⎜ ⎟
⎝ ⎠

θ  (45) 

where [ ]s s,T Tγ ∈ + 2θ . Magnitude analysis of the second and the third terms of Eq. (45) yields 

 
( )

( )

p *
1 p

s

2 2
p 2 *

2 p2 2
s

d
2 d

d
d

h
T O O h

t T

h
T O

t T

θ θ

θθ

⎧ ⎛ ⎞
= =⎪ ⎜ ⎟

⎝ ⎠⎪
⎨

⎛ ⎞⎪ = = ⎜ ⎟⎪
⎝ ⎠⎩

O h

 (46) 

It can be clearly seen that  is one order of magnitude smaller than , and can be neglected. 
In 

2T 1T
( )s2 ~ 2Tθ +θ , as mentioned before, the flow rate into the surge chamber can be 

approximated by a linear function with time, viz. ( ) ( )1 2Q t t θ∝ − , so we can obtain  

 ( ) ( ) ( ) (2 2
1 1/ 2
d 2 ,        2

t
z t Q t t kQ t t

θ
θ= ∝ − ∝ −∫ )2θ  (47) 

 ( ) ( ) ( ) ( 22
0 p 1 2H h t z t kQ t t θ= + ∝ − )  (48) 

The derivative of parabola 
2y x=  at 0x x=  is 02x . The slope of the secant line of 

2y x=  at 

0x x=  is 0x . The derivative of ( )ph t  is twice as large as the secant slope of ( )ph t . Magnitude 



 

Yong-liang ZHANG et al. Water Science and Engineering, Jun. 2010, Vol. 3, No. 2, 174-189 185 

analysis of ( )ph t  yields the following equations: 

 
s

*
p p

s/ 2

d
2

d T

h h
t T

θ+

=  (49) 

 ( )
*
p*

p s p
s

h
h T h

T
θ= −  (50) 

We set sTς θ= , which is about 1/10 in practical hydraulic engineering projects. Combining 
Eqs. (44) and (50) yields the following equation: 
 (* * *

p1 h )1σ ξ ξ ς− + = − + −  (51) 

2.4 Analytical formulas of  and *
ph *ξ   

The two variables 
*ξ  and 

*
ph  can be solved from Eqs. (23) and (51). Eq. (51) can be 

rewritten as 

 
* *

*
p

1
1

h
ξ σ ξ

ς
− +

=
−

 (52) 

Substituting Eq. (52) into Eq. (23) and manipulating the resultant equation yields a quartic 
equation of 

*1 ξ+ , the solution of which is complicated. An approximate analytical solution 
can be derived using the following expansion of 

*1 ξ+  at 
* 0ξ = : 

 ( )2* * *11 1
2

Oξ ξ ξ⎡ ⎤+ = + + ⎢ ⎥⎣ ⎦
 (53) 

Since 
*ξ  is much smaller than 1, the second order term can be ignored. Thus, Eq. (53) can be 

rewritten as 

 * 11 1
2

*ξ ξ+ ≈ +  (54) 

Such an approximation was used by Alleivi (1913):  
 

ss

* 2
0 p 1 22 TT

H h kQ z
θθ ++

= +  (55) 

Eq. (55) shows that 
*
ph  may be viewed as the sum of pressure difference and the increase of 

water level in the surge chamber. If the orifice is small enough, ( )s 2z T θ+  is also small 
compared with , and  

*
0 pH h

s1 / 2T
Q

θ+
can be estimated as . Therefore, 0Q *

ph  can be estimated 
by the following equation: 
 * 2

p 0h kQ H≈ 0  (56) 

It is shown from Eq. (56) that there is an approximately linear proportion between 
*
ph  and k, 

provided that  remains stable. Combining Eqs. (51) and (54) yields a linear function of 0Q *ξ  

and 
*
ph , and substituting it into Eq. (23) leads to a quadratic function of 

*
ph : 

 

* *s s
0 p 0 p 3 2 0 2 0

s s

2
*

0 2 0 2 3 0 p

2 2
2 2 2 2

2 2
2 2

T T
H h H h u u Q u H

A A

k Q u H u u H h

σ ς σ
σ σ

σ σ ς
σ σ

−⎛ ⎞ ⎛+ + − +⎜ ⎟ ⎜− −⎝ ⎠ ⎝

⎡ − ⎤⎛ ⎞= + − +⎜ ⎟⎢ ⎥− −⎝ ⎠⎣ ⎦

⎞
⎟
⎠

 (57) 
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Dimensionless terms are defined as follows: 

s 0

s 02
T Q
A H

λ = , 2 0

0

21
(2 )

u H
Q

σπ
σ

= +
−

, 0
3 2

0

2
2

H
u u

Q
σ ςν

σ
−⎛ ⎞= +⎜ ⎟−⎝ ⎠

, 
2
0

0

kQ
H

η =  

Substituting them into Eq. (57), the following equation in dimensionless form is obtained: 

 ( )2* * *
p p ph h hλν λπ η π ν+ − = −  (58) 

The reasonable solution of Eq. (58) is 

 
2

2 2 1*
p

1

4
2

c c c c
h

c
− −

= 3  (59) 

in which 
2

1c vη= , 2 2 1c ηπν λν= + + , and 
2

3c ηπ λ= + π . Setting ( )*
4 p 1c h ς 1= − + , and 

substituting Eq. (59) into Eq. (51), the following equation is obtained: 

 ( )* 2 2
4 4

1 2 4
2

c cξ σ σ 1= + + + −  (60) 

Eqs. (59) and (60) are the analytical formulas of 
*
ph  and 

*ξ , which are derived from the 
classic water hammer equations using the approximate method dealing with the term 

*1 ξ+ . 

3 Results and discussion 

The conditions for using Eqs. (59) and (60) are (1) that the upstream tunnel is long 
enough that at time s 2T θ+  the front of 3ψ  has not yet arrived at the junction, i.e., ; 
(2) that the type of water hammer is final water hammer, i.e., , and  is much larger 
than 

3 3L a T≥ s

0 1τ μ > sT
θ  (the order of magnitude of  is close to that of sT 10θ ) to ensure that indirect water 

hammer occurs; and (3) that the opening of the valve/turbine decreases linearly. In available 
experiments, the fast valve and needle valve are adopted, neither of which closes linearly. Also, 
in many experiments, sT θ< , and direct water hammer is generated.  

Zienkiewicz and Hawkins (1954) used the Schnyder-Bergeron graphical method to 
calculate transmission pressure, achieving good agreement between theoretical and 
experimental results. The graphical method has been replaced by numerical methods that have 
better accuracy and efficiency, so the results have also verified the numerical methods. Peng 
and Yang (1986) computed the transient pressure and found that the numerical result was in 
good agreement with the experiment. This verified that the basic assumptions are reasonable. 
Prenner and Drobir (1997) conducted an experiment using four different throttle-type orifices 
to study the pressure wave transmission through the surge chamber, and also made a numerical 
calculation using the method of characteristics (MOC), which showed good agreement with 
the experiment. All of these studies show that the MOC leads to good agreement with the 
experimental data. In this study, results obtained using the described analytical formula were 
compared with the numerical results obtained using the MOC to examine the validity of the 
approximate equation. 

Numerical solution of one-dimensional fluid transient flow in pipe systems has been 
developed for half a century. The MOC, which has desirable accuracy, simplicity, and 
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numerical efficiency, is very popular. The characteristics method of one-dimensional fluid 
transient flow and the boundary treatment technique can be found in some standard reference 
books (Wylie and Streeter. 1993; Chaudhry 1987). The time step in this study was 10-2 s. The 
results tend to be convergent as the number of grid cells increases. A relative numerical error 
of less than 10-6 was adopted. The downstream end condition was treated as a valve. The 
formula of the head loss coefficient used here was Eq. (9). In this study, the contraction 
coefficient C = 0.700. We set 0 3w f f= . Other parameters were held constant; 

*
ph  and 

*ξ  

increased with decreasing w. The validity of the present analytical formulas for a hydraulic 
piping system with a surge chamber was examined across a range from 0.1 to 1.0, which 
covers the scope of practical situations. The physical and geometric parameters of the system 
were as follows: the area of the surge chamber was 450.0 m2, and the area of the orifice was in 
the range of 11.309 7 m2 to 113.097 3 m2; the turbine was simplified as a valve and its closure 
time was 10 s; the water levels of the upstream reservoir and downstream river were 1 658.0 m 
and 1 314.6 m, respectively; and other parameters associated with a penstock and a tunnel are 
given in Table 1.  

Table 1 Geometric parameters of tunnel and penstock 

System Length (m) Diameter (m) Roughness Area (m2) 
Penstock   700.0 10.0 0.013  78.539 8 
Tunnel 17 000.0 12.0 0.014 113.097 3 

Analytical and numerical results of  and 
*

0 pH h *
0H ξ  are given in Table 2. It can be seen 

from Table 2 that analytical results of  are in good agreement with the numerical ones. 
The maximum relative error between them of the ten cases where w ranges from 0.1 to 1.0 
was less than 0.5%. The maximum relative error of 

*
0 pH h

*
0H ξ  of the ten cases was around 3%.  

Table 2 Analytical and numerical results of  and 
*

0 pH h *
0H ξ  

*
0 pH h  *

0H ξ  
w Theoretical 

value (m) 
Numerical 
result (m) 

Relative error 
(%) 

Theoretical 
value (m) 

Numerical 
result (m) 

Relative error 
(%) 

1/10 109.95 110.43 0.44 137.61 140.05 1.74 
2/10 43.33 43.48 0.33 75.17 76.68 1.98 
3/10 24.15 24.22 0.30 57.14 58.52 2.36 
4/10 16.64 16.68 0.27 50.07 51.41 2.61 
5/10 13.03 13.07 0.25 46.68 48.00 2.76 
6/10 11.06 11.09 0.23 44.82 46.14 2.86 
7/10 9.88 9.90 0.22 43.71 45.02 2.92 
8/10 9.12 9.14 0.21 42.99 44.31 2.96 
9/10 8.61 8.63 0.20 42.51 43.82 2.99 

10/10 8.25 8.26 0.19 42.17 43.48 3.01 

The derivations of 
*
ph  and 

*ξ  are based on Eqs. (1) and (2), which are derived by 
neglecting conduit friction, so the formulas 

*
ph  and 

*ξ  did not take friction into account. In 
order to improve the accuracy, friction was introduced into the formula. 

At time , the flow rate in the penstock is  and the head loss due to friction in the 0t = 0Q
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penstock is ( )wm 0H . At time s 2t T θ= + , the flow velocity in the penstock is reduced to 
nearly zero, so the friction is reduced to nearly zero. The decrease of flow velocity in the 
tunnel is relatively small. Head recovery due to friction decrease can be estimated by 

( )wm 00H H  for 
*ξ , and is negligible for 

*
ph . The modified formula for 

*ξ  is 

 ( ) ( )* 2 2
4 4 wm

1 2 4 1 0
2

c c Hξ σ σ= + + + − + 0H  (61) 

Table 3 shows that the modified formula of 
*ξ , Eq. (61), is in better agreement with the 

numerical results than Eq. (60). The relative error increases with the decrease of w. This is due 
to the fact that the value of 

*ξ  increases with the decrease of w. The residual error of 
approximate treatment of Eq. (43) also increases. The maximum relative error of all ten cases 
was less than 1%.  

Table 3 Theoretical value of 
*

0H ξ  calculated by Eq. (61) and its relative error 

w *
0H ξ (m) Relative error (%) w *

0H ξ (m) Relative error (%) 

1/10 138.83 0.87 6/10 46.05 0.21 
2/10 76.39 0.38 7/10 44.93 0.20 
3/10 58.36 0.27 8/10 44.22 0.20 
4/10 51.29 0.23 9/10 43.73 0.20 
5/10 47.90 0.21 10/10 43.39 0.20 

In this section, 
*ξ  is modified by adding a penstock friction term. Analytical results of 

*ξ  and 
*
ph  are compared with numerical results obtained using the MOC, showing that they 

are in a good agreement. 

4 Conclusions  

In this study, water hammer and transmitted pressure in a hydro-electric power plant with 
a long diversion tunnel and a throttled surge chamber were examined. Two equations, namely 
a tunnel-surge chamber-penstock joint equation and a water hammer interlocking equation for 
a penstock with a surge chamber located upstream were derived, in which the maximum water 
hammer pressure 

*ξ  at the valve and the maximum transmitted pressure 
*
ph  were two 

unknown variables. The analytical formulas of 
*
ph  and 

*ξ  were deduced by solving these two 
equations. Taking friction in the penstock into account, the analytical formula of 

*ξ  was 
improved in accuracy.  

The results obtained using the proposed analytical formulas are in good agreement with 
the numerical results obtained using the method of characteristics for various sizes of the orifice. 

Under the assumption that the reflected wave from the inlet of the division tunnel does 
not arrive at the bottom of the surge tank at time s 2T θ+ , the proposed formulas are valid for 
hydro-electric power plants with long diversion tunnels. For short tunnels, the reflected wave 
from the inlet of the tunnel has to be taken into consideration. For such a case, an analytical 
study will be quite complicated, but deserves further exploration. 

In this study, 
*
ph  and 

*ξ  were examined under the conditions of linear valve closure. 
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Water hammer pressure and transmitted pressure for nonlinear valve closure will be the 
subject of a future paper. 
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