Water Science and Engineering     2010 3 (1):  47-55    ISSN: 1674-2370:  CN: 32-1785/TV

New acoustic system for continuous measurement of river discharge and water temperature

Kiyosi KAWANISI*1, Arata KANEKO1, Shinya NIGO2, Mohammad SOLTANIASL3, Mahmoud F. MAGHREBI3

1. Graduate School of Engineering, Hiroshima University, 1-4-1, Kagamiyama,
 Higashi-Hiroshima 739-8527, Japan
2. Ministry of Land, Infrastructure, Transport and Tourism, 2-4-36 Kitaku Sikadachou,
Okayama 700-0914, Japan
3. Civil Engineering Department, Ferdowsi University of Mashhad, P. O. Box 91775-1111, Mashhad, Iran
Received 2010-04-01  Revised null  Online 2010-03-30
Reference  
Chiu, C. L., and Hsu, S. M. 2006. Probabilistic approach to modeling of velocity distributions in fluid flows. Journal of Hydrology, 316(1-4), 28-42. [doi:10.1016/j.jhydrol.2005.04. 011]
Kawanisi, K., Kaneko, A., Razaz, M., and Abe, T. 2008. Measurement of cross-sectional average velocity in a shallow tidal river with a next-generation acoustic velocity meter. Proceedings of 16th IAHR-APD Congress and 3rd Symposium of IAHR-ISHS, Vol. V: Hydraulic Structures for Water Projects,1973-1977.. Beijing: Tsinghua University.
Kawanisi, K., Watanabe, S., Kaneko, A., and Abe, T. 2009. River acoustic tomography for continuous measurement of water discharge. Proceedings of 3rd International Conference and Exhibition on Underwater Acoustic Measurements: Technologies and Results, 2,613-620. Nafplion: Hellas Foundation for Research and Technology. 
Kawanisi, K., Razaz, M., Kaneko, A., and Watanabe, S. 2010a. Long-term measurement of stream flow and salinity in a tidal river by the use of the fluvial acoustic tomography system. Journal of Hydrology, 380(1-2), 74-81. [doi:10.1016/j.jhydrol.2009.10.024]
Kawanisi, K., Watanabe, S., Kaneko, A., and Abe, T. 2010b. Continuous measurement of flood flow and cross-sectional average salinity in the Ota diversion channel with fluvial acoustic tomography. Annual Journal of Hydraulic Engineering-JSCE, 54,1081-1086. (in Japanese)
Maghrebi, M. F., and Ball, J. F. 2006. New method for estimation of discharge. Journal of Hydraulic Engineering, 132(10), 1044-1015. [doi:10.1061/(ASCE)0733-9429(2006)132: 10(1044)]
Medwin, H. 1975. Speed of sound in water: A simple equation for realistic parameters. The Journal of the Acoustical Society of America,58, 1318-1319. [doi:10.1121/1.380790]
Ruhl, C. A., and DeRose, J. B. 2004. Investigation of Hydroacoustic Flow-Monitoring Alternatives at the Sacramento River at Freeport, California: Results of the 2002-2004 Pilot Study, Scientific Investigation Report (2004-5172). Reston: U. S. Department of the Interior, U. S. Geological Survey.
Simon, M. K., Omura, J. K., and Levitt, B. K. 1985. Spread Spectrum Communications Handbook. New York: McGraw-Hill.
Sloat, J. V., and Gain, W. S. 1995. Application of Acoustic Velocity Meters for Gaging Discharge of Three Low-Velocity Tidal Streams in the St. John River Basin, Northeast Florida, Water-Resources Investigations Report(95-4230). Tallahassee: U. S. Department of the Interior, U. S. Geological Survey.
Wang, F., and Huang, H. 2005. Horizontal acoustic Doppler current profiler (H-ADCP) for real-time open channel flow measurement: Flow calculation model and field validation. Proceedings of 31st IAHR Congress, 319-328. Seoul: International Association for Hydro-Environment Engineering and Research. 
Zheng, H., Yamaoka, H., Gohda, N., Noguchi, H., and Kaneko, A. 1998. Design of the acoustic tomography system for velocity measurement with an application to the coastal sea. Journal of Acoustic Society of Japan (E), 19, 199-210.

Corresponding author: Kiyosi KAWANISI