Water Science and Engineering     2019 12 (3):  205-212    ISSN: 1674-2370:  CN: 32-1785/TV

An intelligent singular value diagnostic method for concrete dam deformation monitoring
Jie Yang a, Xu-dong Qu a, *, Meng Chang b
a Institute of Water Resources and Hydro-electric Engineering, Xi’an University of Technology, Xi’an 710048, China
b Sinohydro Engineering Bureau 15 Co., Ltd., Xi’an 710016, China
Received 2018-10-30  Revised 2019-08-22  Online 2019-09-30
Reference  

Abid, A., Zhang, M.J., Bagaria, V.K., Zou, J., 2018. Exploring patterns enriched in a dataset with contrastive principal component analysis. Nature Communications 9(1). https://doi.org/10.1038/s41467-018-04608-8.

Du, Y.C., Du, D.P., 2018. Fault detection and diagnosis using empirical mode decomposition based principal component analysis. Computers & Chemical Engineering 115, 1-21. https://doi.org/10.1016/j.compchemeng.2018.03.022.

Gu, C.S., Zhao, E.F., Jin, Y., Su, H.Z., 2011. Singular value diagnosis in dam safety monitoring effect values. Science China Technological Sciences 54(5), 1169-1176. https://doi.org/10.1007/s11431-011-4339-7.

Han, T., Yuan, J.H., Tang, J., An, L.Z., 2016. An approach of intelligent compound fault diagnosis of rolling bearing based on MWT and CNN. Journal of Mechanical Transmission 40(12), 139-143 (in Chinese).

Jasem, A.A., 2017. Simulation of outflow reservoir level and hydro-power at Dukan Dam using artificial neural network. Journal of Computational and Theoretical Nanoscience 14(10), 4686-4693. https://doi.org/10.1166/jctn.2017.6883.

Li, J., Qiu, T., Wen, C., Xie, K., Wen, F.Q., 2018. Robust face recognition using the deep C2D-CNN model based on decision-level fusion. Sensors 18(7), 2080. https://doi.org/10.3390/s18072080.

Li, N., Li, P., Shi, X.L., Yan, K., Ren, W.P., 2010. Outlier identify based on BP neural network in dam safety monitoring. In: Proceedings of the 2nd International Asia Conference on Informatics in Control, Automation and Robotics. IEEE, pp. 210-214. https://doi.org/10.1109/CAR.2010.5456564.

Liang, M.J., Cui, X.Y., Song, Q.S., Zhao, X.M., 2017. Traffic sign recognition method based on HOG-Gabor feature fusion and SoftMax classifier. Journal of Traffic and Transportation Engineering 17(03), 151-158 (in Chinese). https://doi.org/10.3969/j.i ssn.1671-1637.2017.03.016.

Ma, C.H., Yang, J., Cheng, L., Li, T., Wang, L., 2017. Slope stability analysis based on HS-RVM with mixed kernel. Chinese Journal of Rock Mechanics and Engineering 36(s1), 3409-3415 (in Chinese). https://doi.org/10.13722/j.cnki.jrme.2016.0306.

Polson, N.G., Sokolov, V.O., 2017. Deep learning for short-term traffic flow prediction. Transportation Research Part C: Emerging Technologies 79, 1-17. https://doi.org/10.1016/j.trc.2017.02.024.

Schmidhuber, J., 2015. Deep learning in neural networks: An overview. Neural Networks 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003.

Su, H.Z., Wu, Z., Wen, Z.P., 2001. Analysis of genesis of doubtful points by use of safety monitoring system for Shuikou Dam. Journal of Hohai University (Natural Sciences) 29(3), 55-59 (in Chinese).

Tang, M., He, J.P., Li, Z.Z., Wu, Y.F., 2005. Analysis to abnormal values in dam safety monitoring and its module creation. Journal of Yangtze River Scientific Research Institute 22(3), 29-31 (in Chinese). https://doi.org/10.3969/j.issn.1001-5485.2005.03.008.

Wei, X.X., Zhou, Y.Q., 2010. A new performance categories evaluation method based on ROC curve. Computer Technology and Development 20(11), 47-50 (in Chinese).

Yin, F., Feng, D.Z., 2008. Identification of face based on PCA algorithm. Computer Technology and Development 10, 31-33 (in Chinese).

Zhang, J.J., Zong, C.Q., 2015. Deep neural networks in machine translation: an overview. IEEE Intelligent Systems 30(5), 16-25. https://doi.org/10.1109/MIS.2015.69.

Zhang, K., Zuo, W.M., Gu, S.H., Zhang, L., 2017. Learning deep CNN denoiser prior for image restoration. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, pp. 2808-2817. https://doi.org/10.1109/CVPR.2017.300.

Zhang, Q.C., Yang, L.T., Chen, Z.K., Li, P., 2018. A survey on deep learning for big data. Information Fusion 42, 146-157. https://doi.org/10.1016/j.inffus.2017.10.006.

Zhao, R., Yan, R.Q., Chen, Z.H., Mao, K.Z., Wang, P., Gao, R.X., 2019. Deep learning and its applications to machine health monitoring. Mechanical Systems & Signal Processing 115, 213-237. https://doi.org/10.1016/j.ymssp.2018.05.050.

Zhou, F.Y., Jin, L.P., Dong, J., 2017. Review of convolutional neural networks. Chinese Journal of Computers 40(6), 1229-1251 (in Chinese).

Zhou, J., Li, E.M., Yang, S., Wang, M.Z., Shi, X., Yao, S.Z., Mitri, H.S., 2019. Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Safety Science 118, 505-518. https://doi.org/10.1016/j.ssci.2019.05.046.

Zubair, S., Yan, F., Wang, W.W., 2013. Dictionary learning based sparse coefficients for audio classification with max and average pooling. Digital Signal Processing 23(3), 960-970. https://doi.org/10.1016/j.dsp.2013.01.004.


Corresponding author: Xu-dong Qu