Water Science and Engineering
     Home |  About Journal |  Editorial Board |  Guidance |  Publication Ethics |  Subscription |  Contacts Us | 
 Online Submission
 Manuscript Tracking
 Peer Review
 Editorial Commission
 Office Work
 Forthcoming Articles
 Current Issue
 Advanced Search
 Top Download
 Top Click
 Email Alert
 Registration Form
 Copyright Agreement
 Hohai University
 Wangfang Data
 Springer Link
 Engineering Village
 Elsevier ScienceDirect

Water Science and Engineering

2011, Vol.4 Num.4
Online: 2011-12-30

357 Yan ZHU; Yuan-yuan ZHA; Ju-xiu TONG; Jin-zhong YANG
Method of coupling 1-D unsaturated flow with 3-D saturated flow on large scale

A coupled unsaturated-saturated water flow numerical model was developed. The water flow in the unsaturated zone is considered the one-dimensional vertical flow, which changes in the horizontal direction according to the groundwater table and the atmospheric boundary conditions. The groundwater flow is treated as the three-dimensional water flow. The recharge flux to groundwater from soil water is considered the bottom flux for the numerical simulation in the unsaturated zone, and the upper flux for the groundwater simulation. It connects and unites the two separated water flow systems. The soil water equation is solved based on the assumed groundwater table and the subsequent predicted recharge flux. Then, the groundwater equation is solved with the predicted recharge flux as the upper boundary condition. Iteration continues until the discrepancy between the assumed and calculated groundwater nodal heads have a certain accuracy. Illustrative examples with different water flow scenarios regarding the Dirichlet boundary condition, the Neumann boundary condition, the atmospheric boundary condition, and the source or sink term were calculated by the coupled model. The results are compared with those of other models, including Hydrus-1D, SWMS-2D, and FEFLOW, which demonstrate that the coupled model is effective and accurate and can significantly reduce the computational time for the large number of nodes in saturated-unsaturated water flow simulation.

2011 Vol. 4 (4): 357-373 [Abstract] ( 1978 ) [HTML 1KB] [PDF 25477KB] ( 2791 )
374 Gui-hua LU; Qian MA; Jian-hua ZHANG
Analysis of black water aggregation in Taihu Lake

Black water aggregation (BWA) in Taihu Lake is a disaster for the lake environment. It is a phenomenon resulting from water environmental deterioration and eutrophication caused by accumulation of pollutants in the lake, according to research on the water quality, pollutants of BWA, and occurrence mechanisms of BWA. Dead algae are the material base of BWA, the polluted sediment is an important factor for the formation of BWA, and hydrological and meteorological conditions such as sun light, air temperature, wind speed, and water flow are the other factors that may lead to the formation of BWA. Thioether substances such as dimethyl trisulfide are the representative pollutants of BWA. Parameters such as chlorophyll-a, DO, pH, and water temperature are sensitive indicators of BWA. Measures such as algae collection, ecological dredging, pollution control, and water diversion from the Yangtze River to the lake, are effective, and strengthening aeration is an emergency measure to control BWA.

2011 Vol. 4 (4): 374-385 [Abstract] ( 2327 ) [HTML 1KB] [PDF 20075KB] ( 2416 )
386 Dongkyun IM; Hyeongsik KANG
Two-dimensional physical habitat modeling of effects of habitat structures on urban stream restoration

River corridors, even if highly modified or degraded, still provide important habitats for numerous biological species, and carry high aesthetic and economic values. One of the keys to urban stream restoration is recovery and maintenance of ecological flows sufficient to sustain aquatic ecosystems. In this study, the Hongje Stream in the Seoul metropolitan area of Korea was selected for evaluating a physically-based habitat with and without habitat structures. The potential value of the aquatic habitat was evaluated by a weighted usable area (WUA) using River2D, a two-dimensional hydraulic model. The habitat suitability for Zacco platypus in the Hongje Stream was simulated with and without habitat structures. The computed WUA values for the boulder, spur dike, and riffle increased by about 2%, 7%, and 131%, respectively, after their construction. Also, the three habitat structures, especially the riffle, can contribute to increasing hydraulic heterogeneity and enhancing habitat diversity.

2011 Vol. 4 (4): 386-395 [Abstract] ( 1993 ) [HTML 1KB] [PDF 40566KB] ( 2214 )
396 Lu QU; Ran LI; Jia LI;Ke-feng LI; Lin WANG
Experimental study on total dissolved gas supersaturation in water

More and more high dams have been constructed and operated in China. The total dissolved gas (TDG) supersaturation caused by dam discharge leads to gas bubble disease or even death of fish. Through a series of experiments, the conditions and requirements of supersaturated TDG generation were examined in this study. The results show that pressure (water depth), aeration, and bubble dissolution time are required for supersaturated TDG generation, and the air-water contact area and turbulence intensity are the main factors that affect the generation rate of supersaturated TDG. The TDG supersaturation levels can be reduced by discharging water to shallow shoals downstream of the dam or using negative pressure pipelines. Furthermore, the TDG supersaturation levels in stilling basins have no direct relationship with those in reservoirs. These results are of great importance for further research on the prediction of supersaturated TDG generation caused by dam discharge and aquatic protection.

2011 Vol. 4 (4): 396-404 [Abstract] ( 2469 ) [HTML 1KB] [PDF 7173KB] ( 2690 )
405 Ling KANG; Xiao-ming GUO
Hydrodynamic effects of reconnecting lake group with Yangtze River in China

The hydrodynamic effects of reconnecting a lake group with the Yangtze River were simulated using a three-dimensional hydrodynamic model. The model was calibrated and validated using the measured water temperature and total phosphorous. The circulation patterns, water temperature, and water exchange conditions between sub-lakes were simulated under two conditions: (1) the present condition, in which the lake group is isolated from the Yangtze River; and (2) the future condition, with a proposed improvement in which connecting the lake group with the Yangtze River will allow river water to be diverted into the lake group. The simulation period selected was characterized by extremely high temperature and very little rain. The results show that the cold inflow from the river has a significant effect on the water temperature only near the inlets, and the effect is more obvious in the lower water layers than that in the upper ones. The circulation pattern changes significantly and small-scale vortices only exist in part of the lake regions. The water exchange between sub-lakes is greatly enhanced with the proposed improvement. The water replacement rate increases with water diversion but varies in different sub-lakes. Finally, a new water diversion scheme was proposed to avoid contamination of some lakes in the early stage.

2011 Vol. 4 (4): 405-420 [Abstract] ( 2015 ) [HTML 1KB] [PDF 101867KB] ( 2046 )
421 Jun LU; Ling-ling WANG; Hai ZHU; Hui-chao DAI
Large eddy simulation of water flow over series of dunes

Large eddy simulation was used to investigate the spatial development of open channel flow over a series of dunes. The three-dimensional filtered Navier-Stokes (N-S) equations were numerically solved with the fractional-step method in sigma coordinates. The subgrid-scale turbulent stress was modeled with a dynamic coherent eddy viscosity model proposed by the authors. The computed velocity profiles are in good agreement with the available experimental results. The mean velocity and the turbulent Reynolds stress affected by a series of dune-shaped structures were compared and analyzed. The variation of turbulence statistics along the flow direction affected by the wavy bottom roughness has been studied. The turbulent boundary layer in a complex geographic environment can be simulated well with the proposed large eddy simulation (LES) model.

2011 Vol. 4 (4): 421-430 [Abstract] ( 1649 ) [HTML 1KB] [PDF 14042KB] ( 2519 )
431 Zheng GONG; Chang-kuan ZHANG; Cheng-biao ZUO; Wei-deng WU
Sediment transport following water transfer from   Yangtze River to Taihu Basin

To meet the increasing need of fresh water and to improve the water quality of Taihu Lake, water transfer from the Yangtze River was initiated in 2002. This study was performed to investigate the sediment distribution along the river course following water transfer. A rainfall-runoff model was first built to calculate the runoff of the Taihu Basin in 2003. Then, the flow patterns of river networks were simulated using a one-dimensional river network hydrodynamic model. Based on the boundary conditions of the flow in tributaries of the Wangyu River and the water level in Taihu Lake, a one-dimensional hydrodynamic and sediment transport numerical model of the Wangyu River was built to analyze the influences of the inflow rate of the water transfer and the suspended sediment concentration (SSC) of inflow on the sediment transport. The results show that the water transfer inflow rate and SSC of inflow have significant effects on the sediment distribution. The higher the inflow rate or SSC of inflow is, the higher the SSC value is at certain cross-sections along the river course of water transfer. Higher inflow rate and SSC of inflow contribute to higher sediment deposition per kilometer and sediment thickness. It is also concluded that a sharp decrease of the inflow velocity at the entrance of the Wangyu River on the river course of water transfer induces intense sedimentation at the cross-section near the Changshu hydro-junction. With an increasing distance from the Changshu hydro-junction, the sediment deposition and sedimentation thickness decrease gradually along the river course.

2011 Vol. 4 (4): 431-444 [Abstract] ( 2545 ) [HTML 1KB] [PDF 11052KB] ( 2226 )
445 Xin CAI; Ying-li WU; Jian-gang YI; Yu MING
Research on shape optimization of CSG dams

The multi-objective optimization method was used for shape optimization of cement sand and gravel (CSG) dams in this study. The economic efficiency, the sensitivities of maximum horizontal displacement and maximum settlement of the dam to water level changes, the overall stability, and the overall strength security were taken into account during the optimization process. Three weight coefficient selection schemes were adopted to conduct shape optimization of a dam, and the case studies lead to the conclusion that both the upstream and downstream dam slope ratios for the optimal cross-section equal 1:0.7, which is consistent with the empirically observed range of 1:0.6 to 1:0.8 for the upstream and downstream dam slope ratios of CSG dams. Therefore, the present study is of certain reference value for designing CSG dams.

2011 Vol. 4 (4): 445-454 [Abstract] ( 2410 ) [HTML 1KB] [PDF 12507KB] ( 3821 )
455 Li-xia GUO, Xiao-hong BAI, Ling ZHONG, Sheng QIANG
Temperature control and cracking prevention in coastal thin-wall concrete structures

A three-dimensional finite element program for thermal analysis of hydration heat in concrete structures with a plastic pipe cooling system is introduced in this paper. The program was applied to simulation of the temperature and stress field of the Cao’e Sluice during the construction period. From the calculated results, we can find that the temperature and stress of concrete cooled with plastic pipes are much lower than those of concrete without pipes. Moreover, plastic pipes could not be corroded by seawater. That is to say, a good effect of temperature control and cracking prevention can be achieved, which provides a useful reference for other similar nearshore concrete projects.

2011 Vol. 4 (4): 455-462 [Abstract] ( 2114 ) [HTML 1KB] [PDF 7956KB] ( 2392 )
463 Yong-hao FANG; Jun-feng LIU; Yi-qun CHEN
Effect of magnesia on properties and microstructure of alkali-activated slag cement

The effect of magnesia burnt at 800-950℃ on the properties, especially the shrinkage, of alkali-activated slag cement (AASC) was experimentally studied. Experimental results show that, although adding 4%-8% lightly-burnt magnesia may shorten the setting time and slightly reduce the compressive strength of AASC, it can remarkably reduce the shrinkage of AASC. The results also show that the setting time of AASC with a certain amount of magnesia increases with the burning temperature, and that the flexural and compressive strengths of AASC decrease with the increase of the additive amount of magnesia. Generally, the adverse effect of magnesia decreases with the increase of the burning temperature, and the shrinkage-reducing effect of magnesia increases with the additive amount of magnesia. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses show that some magnesia particles in the hardened AASC paste at a 28-d age remained unhydrated, and that the compactness decreased a little as magnesia was added. We can also conclude that magnesia burnt at 850-950℃ can be used to reduce the shrinkage of AASC only when its additive amount does not exceed 8%; otherwise, the setting time may be too short, and the flexural and compressive strengths may severely decrease.

2011 Vol. 4 (4): 463-469 [Abstract] ( 1717 ) [HTML 1KB] [PDF 9102KB] ( 2544 )
Water Science and Engineering
Quarterly:(Start 2008)
ISSN: 1674-2370
CN: 32-1785/TV
Edited by
Editorial Board of Water
Science and Engineering

Distributed by
Editorial Office of Water
Science and Engineering

AddressEditorial Board of Water Science and Engineering, 1 Xikang Road, Nanjing, 210098, P. R. China
Tel: 86-25-83786363
E-mail: wse2008@vip.163.com
Copyright © 2009 Editorial office of Water Science and Engineering
Support by Beijing Magtech Co.ltd    support@magtech.com.cn