Citation: | Fernaldi Gradiyanto, Priyo Nugroho Parmantoro, Suharyanto. 2025: Impact of climate change on Kupang River flow and hydrological extremes in Greater Pekalongan, Indonesia. Water Science and Engineering, 18(1): 69-77. doi: 10.1016/j.wse.2024.03.005 |
Abbas, S.A., Xuan, Y., Bailey, R.T., 2022. Assessing climate change impact on water resources in water demand scenarios using SWAT-MODFLOW-WEAP. Hydrology 9(1), 164, https://doi.org/10.3390/hydrology9100164.
|
Abbaspour, K.C., 2015. SWAT Calibration and Uncertainty Programs. A User Manual. EAWAG, Dubendorf.
|
Arnold, J.G., Allen, P.M., Bernhardt, G., 1993. A comprehensive surface-groundwater flow model. Journal of Hydrology 142(1-4), 47-69, https://doi.org/10.1016/0022-1694(93)90004-S.
|
Badan Perencanaan Pembangunan Daerah (Bappeda) Provinsi Jawa Tengah, 2022. Final Report “Pre-Feasibility Study of Dam Design for Regional WASH in Kupang Catchment Pekalongan”. Badan Perencanaan Pembangunan Daerah Kabupaten Pekalongan, Pekalongan.
|
Bashit, N., Prasetyo, Y., Sukmono, A., Wicaksono, W., 2020. Analysis of built-up land spatial patterns using multitemporal satellite imagery in Pekalongan City. Journal of Applied Geospatial Information 4, 356.
|
Bates, B.C., Kundzewicz, Z., Wu, S., Palutikof, J., 2008. Intergovernmental Panel on Climate Change Working Group II, 2008. Climate Change and Water. IPCC, Geneva.
|
BSN, 2016. Procedure in Calculating Design Flood. BSN, Jakarta.
|
Chaussard, E., Amelung, F., Abidin, H., Hong, S.H., 2013. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens. Environ. 128, 150-161, https://doi.org/10.1016/j.rse.2012.10.015.
|
D’Oria, M., Ferraresi, M., Tanda, M.G., 2017. Historical trends and high-resolution future climate projections in northern Tuscany (Italy). J. Hydrol. 555, 708-723, https://doi.org/10.1016/j.jhydrol.2017.10.054.
|
Desmet, Q., Ngo-Duc, T., 2022. A novel method for ranking CMIP6 global climate models over the southeast Asian region. International Journal of Climatology 42(1), 97-117, https://doi.org/10.1002/joc.7234.
|
FAO, 2012. Harmonized World Soil Database (Version 1.2). FAO, Rome.
|
Faqih, A., Muhammad, F.R., Widagdo, I.B., Listyarini, J., 2020. Climate Prediction and Scenarios for Flood Hazard Studies in Pekalongan, Central Java, Indonesia. Yayasan Mercy Corps Indonesia, Jakarta.
|
Gohari, A., Eslamian, S., Abedi-Koupaei, J., Massah Bavani, A., Wang, D., Madani, K., 2013. Climate change impacts on crop production in Iran’s Zayandeh-Rud River Basin. Science of the Total Environment 442, 405-419, https://doi.org/10.1016/j.scitotenv.2012.10.029.
|
Graham, L.P., Andreaasson, J., Carlsson, B., 2007. Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods - A case study on the Lule River basin. Climate Change 81, 293-307, https://doi.org/10.1007/s10584-006-9215-2.
|
Hasan, M.M., Wyseure, G., 2018. Impact of climate change on hydropower generation in Rio Jubones Basin, Ecuador. Water Sci. Eng. 11(2), 157-166, https://doi.org/10.1016/j.wse.2018.07.002.
|
Maraun, D., 2016. Bias correcting climate change simulations - A critical review. Current Climate Change Reports 2, 211-220, https://doi.org/10.1007/s40641-016-0050-x.
|
Marhaento, H., Booij, M.J., Hoekstra, A.Y., 2018. Hydrological response to future land-use change and climate change in a tropical catchment. Hydrological Sciences Journal 63(9), 1368-1385, https://doi.org/10.1080/02626667.2018.1511054.
|
Pandey, B.K., Khare, D., Kawasaki, A., Meshesha, T.W., 2021. Integrated approach to simulate hydrological responses to land use dynamics and climate change scenarios employing scoring method in upper Narmada basin, India. J. Hydrol. 598, 126429, https://doi.org/10.1016/j.jhydrol.2021.126429.
|
Prasada, I.Y., Masyhuri, M., 2019. The conversion of agricultural land in urban areas (case study of Pekalongan City, Central Java). Journal of Agribusiness and Rural Development Research 5(2), 112-118, https://doi.org/10.18196/agr.5280.
|
Rathjens, H., Bieger, K., Srinivasan, R., Chaubey, I., Arnold, J.G., 2016. CMhyd User Manual Documentation for Preparing Simulated Climate Change Data for Hydrologic Impact Studies. Texas Water Resources Institute, College Station.
|
Risal, A., Urfels, A., Srinivasan, R., Bayissa, Y., Shrestha, N., Paudel, G.P., Krupnik, T.J., 2022. Impact of climate change on water resources and crop production in western Nepal: Implications and adaptation strategies. Hydrology 9(8), 132, https://doi.org/10.3390/hydrology9080132.
|
Saedi, F., Ahmadi, A., Abbaspour, K.C., 2021. Optimal water allocation of the Zayandeh-Roud Reservoir in Iran based on inflow projection under climate change scenarios. Journal of Water and Climate Change 12(5), 2068-2081, https://doi.org/10.2166/wcc.2021.219.
|
Shrestha, B., Babel, M.S., Maskey, S., Van Griensven, A., Uhlenbrook, S., Green, A., Akkharath, I., 2013. Impact of climate change on sediment yield in the Mekong River basin: A case study of the Nam Ou basin, Lao PDR. Hydrol. Earth Syst. Sci. 17(1), 1-20, https://doi.org/10.5194/hess-17-1-2013.
|
Suharini, E., Hanafi, F., Akhsin, W., Sidiq, B.N., 2017. Study of population growth and land use change impact of intrusion at Pekalongan City. In: Proceedings of the 1st International Conference on Geography and Education (ICGE 2016). Atlantis Press, Dordrecht, pp. 232-238, https://doi.org/10.2991/icge-16.2017.46.
|
Tallaksen, L.M., Van Lanen, H.A.J., Hisdal, H., Clausen, B., Peters, E., Gustard, A., 2004a. Hydrological drought processes and estimation methods for streamflow and groundwater. Chapter 5: Hydrological Drought Characteristics. In: Developments in Water Science. Elsevier, Amsterdam, pp. 139-198.
|
Tallaksen, L.M., Van Lanen, H.A.J., Madsen, H., Hisdal, H., 2004b. Hydrological drought processes and estimation methods for streamflow and groundwater. Chapter 6: Frequency analysis. In: Developments in Water Science. Elsevier, Amsterdam, pp. 199-272.
|
Tallaksen, L.M., Van Lanen, H.A.J., Madsen, H., Hisdal, H., 2016. Mekong River flow and hydrological extremes under climate change. Hydrol. Earth Syst. Sci. 20(7), 3027-3041, https://doi.org/10.5194/hess-20-3027-2016.
|
Tokarska, K.B., Stolpe, M.B., Sippel, S., Fischer, E.M., Smith, C.J., Lehner, F., Knutti, R., 2020. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 6, eaaz9549, https://doi.org/10.1126/sciadv.aaz9549.
|
Wohl, E., Barros, A., Brunsell, N., Chappell, N.A., Coe, M., Giambelluca, T., Goldsmith, S., Harmon, R., Hendrickx, J.M.H., Juvik, J. et al., 2012. The hydrology of the humid tropics. Nature Climate Change 2, 655-662, https://doi.org/10.1038/nclimate1556.
|
Xu, Z., Zhang, R., 2023. Compound extreme events in Yarlung Zangbo River Basin from 1977 to 2018. Water Sci. Eng. 16(1), 36-44, https://doi.org/10.1016/j.wse.2022.08.002.
|
Zhang, X., Srinivasan, R., Hao, F., 2007. Predicting hydrologic response to climate change in the Luohe River basin using the SWAT model. Trans. ASABE 50(3), 901-910, https://doi.org/10.13031/2013.23154.
|