Volume 18 Issue 1
Mar.  2025
Turn off MathJax
Article Contents
Fernaldi Gradiyanto, Priyo Nugroho Parmantoro, Suharyanto. 2025: Impact of climate change on Kupang River flow and hydrological extremes in Greater Pekalongan, Indonesia. Water Science and Engineering, 18(1): 69-77. doi: 10.1016/j.wse.2024.03.005
Citation: Fernaldi Gradiyanto, Priyo Nugroho Parmantoro, Suharyanto. 2025: Impact of climate change on Kupang River flow and hydrological extremes in Greater Pekalongan, Indonesia. Water Science and Engineering, 18(1): 69-77. doi: 10.1016/j.wse.2024.03.005

Impact of climate change on Kupang River flow and hydrological extremes in Greater Pekalongan, Indonesia

doi: 10.1016/j.wse.2024.03.005
Funds:

This work was supported by the funding Riset Unggulan Daerah 2022 of the Bureau of Development Planning and Research in Central Java Province (BAPPEDA Provinsi Jawa Tengah).

  • Received Date: 2023-03-29
  • Accepted Date: 2023-12-29
  • Available Online: 2025-03-05
  • Located downstream the Kupang Catchment in Indonesia, Pekalongan faces significant land subsidence issues, leading to severe coastal flooding. This study aimed to assess the impact of climate change on future flow regimes and hydrological extremes to inform long-term water resources management strategies for the Kupang Catchment. Utilizing precipitation and air temperature data from general circulation models in the Coupled Model Intercomparison Project 6 (CMIP6) and employing bias correction techniques, the Soil and Water Assessment Tool (SWAT) hydrological model was employed to analyze climate-induced changes in hydrological fluxes, specifically streamflow. Results indicated a consistent increase in monthly streamflow during the wet season, with a substantial rise of 22.8%, alongside a slight decrease of 18.0% during the dry season. Moreover, both the frequency and severity of extremely low and high flows were projected to intensify by approximately 50% and 70%, respectively, for a 20-year return period, suggesting heightened flood and drought risks in the future. The observed declining trend in low flow, by up to 11%, indicated the potential for long-term groundwater depletion exacerbating the threat of land subsidence and coastal flooding, especially in areas with inadequate surface water management policies and infrastructure.

     

  • loading
  • Abbas, S.A., Xuan, Y., Bailey, R.T., 2022. Assessing climate change impact on water resources in water demand scenarios using SWAT-MODFLOW-WEAP. Hydrology 9(1), 164, https://doi.org/10.3390/hydrology9100164.
    Abbaspour, K.C., 2015. SWAT Calibration and Uncertainty Programs. A User Manual. EAWAG, Dubendorf.
    Arnold, J.G., Allen, P.M., Bernhardt, G., 1993. A comprehensive surface-groundwater flow model. Journal of Hydrology 142(1-4), 47-69, https://doi.org/10.1016/0022-1694(93)90004-S.
    Badan Perencanaan Pembangunan Daerah (Bappeda) Provinsi Jawa Tengah, 2022. Final Report “Pre-Feasibility Study of Dam Design for Regional WASH in Kupang Catchment Pekalongan”. Badan Perencanaan Pembangunan Daerah Kabupaten Pekalongan, Pekalongan.
    Bashit, N., Prasetyo, Y., Sukmono, A., Wicaksono, W., 2020. Analysis of built-up land spatial patterns using multitemporal satellite imagery in Pekalongan City. Journal of Applied Geospatial Information 4, 356.
    Bates, B.C., Kundzewicz, Z., Wu, S., Palutikof, J., 2008. Intergovernmental Panel on Climate Change Working Group II, 2008. Climate Change and Water. IPCC, Geneva.
    BSN, 2016. Procedure in Calculating Design Flood. BSN, Jakarta.
    Chaussard, E., Amelung, F., Abidin, H., Hong, S.H., 2013. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens. Environ. 128, 150-161, https://doi.org/10.1016/j.rse.2012.10.015.
    D’Oria, M., Ferraresi, M., Tanda, M.G., 2017. Historical trends and high-resolution future climate projections in northern Tuscany (Italy). J. Hydrol. 555, 708-723, https://doi.org/10.1016/j.jhydrol.2017.10.054.
    Desmet, Q., Ngo-Duc, T., 2022. A novel method for ranking CMIP6 global climate models over the southeast Asian region. International Journal of Climatology 42(1), 97-117, https://doi.org/10.1002/joc.7234.
    FAO, 2012. Harmonized World Soil Database (Version 1.2). FAO, Rome.
    Faqih, A., Muhammad, F.R., Widagdo, I.B., Listyarini, J., 2020. Climate Prediction and Scenarios for Flood Hazard Studies in Pekalongan, Central Java, Indonesia. Yayasan Mercy Corps Indonesia, Jakarta.
    Gohari, A., Eslamian, S., Abedi-Koupaei, J., Massah Bavani, A., Wang, D., Madani, K., 2013. Climate change impacts on crop production in Iran’s Zayandeh-Rud River Basin. Science of the Total Environment 442, 405-419, https://doi.org/10.1016/j.scitotenv.2012.10.029.
    Graham, L.P., Andreaasson, J., Carlsson, B., 2007. Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods - A case study on the Lule River basin. Climate Change 81, 293-307, https://doi.org/10.1007/s10584-006-9215-2.
    Hasan, M.M., Wyseure, G., 2018. Impact of climate change on hydropower generation in Rio Jubones Basin, Ecuador. Water Sci. Eng. 11(2), 157-166, https://doi.org/10.1016/j.wse.2018.07.002.
    Maraun, D., 2016. Bias correcting climate change simulations - A critical review. Current Climate Change Reports 2, 211-220, https://doi.org/10.1007/s40641-016-0050-x.
    Marhaento, H., Booij, M.J., Hoekstra, A.Y., 2018. Hydrological response to future land-use change and climate change in a tropical catchment. Hydrological Sciences Journal 63(9), 1368-1385, https://doi.org/10.1080/02626667.2018.1511054.
    Pandey, B.K., Khare, D., Kawasaki, A., Meshesha, T.W., 2021. Integrated approach to simulate hydrological responses to land use dynamics and climate change scenarios employing scoring method in upper Narmada basin, India. J. Hydrol. 598, 126429, https://doi.org/10.1016/j.jhydrol.2021.126429.
    Prasada, I.Y., Masyhuri, M., 2019. The conversion of agricultural land in urban areas (case study of Pekalongan City, Central Java). Journal of Agribusiness and Rural Development Research 5(2), 112-118, https://doi.org/10.18196/agr.5280.
    Rathjens, H., Bieger, K., Srinivasan, R., Chaubey, I., Arnold, J.G., 2016. CMhyd User Manual Documentation for Preparing Simulated Climate Change Data for Hydrologic Impact Studies. Texas Water Resources Institute, College Station.
    Risal, A., Urfels, A., Srinivasan, R., Bayissa, Y., Shrestha, N., Paudel, G.P., Krupnik, T.J., 2022. Impact of climate change on water resources and crop production in western Nepal: Implications and adaptation strategies. Hydrology 9(8), 132, https://doi.org/10.3390/hydrology9080132.
    Saedi, F., Ahmadi, A., Abbaspour, K.C., 2021. Optimal water allocation of the Zayandeh-Roud Reservoir in Iran based on inflow projection under climate change scenarios. Journal of Water and Climate Change 12(5), 2068-2081, https://doi.org/10.2166/wcc.2021.219.
    Shrestha, B., Babel, M.S., Maskey, S., Van Griensven, A., Uhlenbrook, S., Green, A., Akkharath, I., 2013. Impact of climate change on sediment yield in the Mekong River basin: A case study of the Nam Ou basin, Lao PDR. Hydrol. Earth Syst. Sci. 17(1), 1-20, https://doi.org/10.5194/hess-17-1-2013.
    Suharini, E., Hanafi, F., Akhsin, W., Sidiq, B.N., 2017. Study of population growth and land use change impact of intrusion at Pekalongan City. In: Proceedings of the 1st International Conference on Geography and Education (ICGE 2016). Atlantis Press, Dordrecht, pp. 232-238, https://doi.org/10.2991/icge-16.2017.46.
    Tallaksen, L.M., Van Lanen, H.A.J., Hisdal, H., Clausen, B., Peters, E., Gustard, A., 2004a. Hydrological drought processes and estimation methods for streamflow and groundwater. Chapter 5: Hydrological Drought Characteristics. In: Developments in Water Science. Elsevier, Amsterdam, pp. 139-198.
    Tallaksen, L.M., Van Lanen, H.A.J., Madsen, H., Hisdal, H., 2004b. Hydrological drought processes and estimation methods for streamflow and groundwater. Chapter 6: Frequency analysis. In: Developments in Water Science. Elsevier, Amsterdam, pp. 199-272.
    Tallaksen, L.M., Van Lanen, H.A.J., Madsen, H., Hisdal, H., 2016. Mekong River flow and hydrological extremes under climate change. Hydrol. Earth Syst. Sci. 20(7), 3027-3041, https://doi.org/10.5194/hess-20-3027-2016.
    Tokarska, K.B., Stolpe, M.B., Sippel, S., Fischer, E.M., Smith, C.J., Lehner, F., Knutti, R., 2020. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 6, eaaz9549, https://doi.org/10.1126/sciadv.aaz9549.
    Wohl, E., Barros, A., Brunsell, N., Chappell, N.A., Coe, M., Giambelluca, T., Goldsmith, S., Harmon, R., Hendrickx, J.M.H., Juvik, J. et al., 2012. The hydrology of the humid tropics. Nature Climate Change 2, 655-662, https://doi.org/10.1038/nclimate1556.
    Xu, Z., Zhang, R., 2023. Compound extreme events in Yarlung Zangbo River Basin from 1977 to 2018. Water Sci. Eng. 16(1), 36-44, https://doi.org/10.1016/j.wse.2022.08.002.
    Zhang, X., Srinivasan, R., Hao, F., 2007. Predicting hydrologic response to climate change in the Luohe River basin using the SWAT model. Trans. ASABE 50(3), 901-910, https://doi.org/10.13031/2013.23154.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (26) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return