Volume 17 Issue 1
Mar.  2024
Turn off MathJax
Article Contents
Amudham Radha Amal Raj, Prabhakaran Mylsamy, V. Sivasankar, B. Sathish Kumar, Kiyoshi Omine, T.G. Sunitha. 2024: Heavy metal pollution of river water and eco-friendly remediation using potent microalgal species. Water Science and Engineering, 17(1): 41-50. doi: 10.1016/j.wse.2023.04.001
Citation: Amudham Radha Amal Raj, Prabhakaran Mylsamy, V. Sivasankar, B. Sathish Kumar, Kiyoshi Omine, T.G. Sunitha. 2024: Heavy metal pollution of river water and eco-friendly remediation using potent microalgal species. Water Science and Engineering, 17(1): 41-50. doi: 10.1016/j.wse.2023.04.001

Heavy metal pollution of river water and eco-friendly remediation using potent microalgal species

doi: 10.1016/j.wse.2023.04.001
  • Received Date: 2022-11-13
  • Accepted Date: 2023-03-06
  • Pollution of rivers is mainly caused by anthropogenic activities such as discharge of effluent from industrial facilities, maintenance of sewage/effluent treatment plants, and dumping of solid waste on river banks. This study dealt with the pollution issues of the Cooum River in the well-known city of Chennai in South India. Water samples from 27 locations were collected and analyzed for 12 elements, including Ba, B, and Al, as well as heavy metals such as Pb, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Cd. The samples showed levels of these elements that exceeded World Health Organization recommendations. Pearson correlation analysis revealed the inter-dependency among elements, and the contribution of each element based on factor loadings showed its percentage contribution compared to others. Water samples from six significant locations were chosen for remediation with three algae: Chlorella vulgaris, Scenedesmus dimorphus, and Phormedium sp. The uptake of pollutants led to the continuous growth of algae during the incubation period of 15 d, effectively removing heavy metals from the river water. The increasing levels of algal counts and the chlorophyll a content confirmed the algal growth during the incubation period, followed by a declining stage after the incubation period. The scanning electron microscopic images of algae before and after the remediation showed no remarkable modification of morphological patterns. This study showed that the uptake of heavy metals using algae is an effective water pollution remediation measure, making the process practicable in the field on a large scale in the near future.


  • loading
  • Abd-Alla, M.H., Bagy, M.K., Wahab, A., Bashandy, S.R., 2014. Activation of Rhizobium tibeticum with flavonoids enhances nodulation, nitrogen fixation and growth of fenugreek (Trigonella foenum-graecum L.) grown in cobalt polluted soil. Archives of Environmental Contamination & Toxicology 66, 303-315. https://doi.org/10.1007/s00244-013-9980-7.
    Aksu, Z., Sag, Y., Kutsal, T., 1992. The biosorption of copper(II) by C. vulgaris and Z. ramigera. Environ.Technol. 13(6), 579-586.
    Al Azad, S., Estim, A., Mustafa, S., Sumbing, M.V., 2017. Assessment of nutrients in seaweed tank from land based integrated multitrophic aquaculture module. J. Geosci. Environ. Protect. 5(8), 137-147. https://doi.org/10.4236/gep.2017.5801https://doi.org/10.4236/gep.2017.58012.
    Alam, M.A., Wan, C., Zhao, X.Q., Chen, L.J., Chang, J.S., Bai, F.W., 2015. Enhanced removal of Zn2+ or Cd2+ by the flocculating Chlorella vulgaris JSC-7. J. Hazard. Mater. 289, 38-45. https://doi.org/10.1016/j.jhazmat.2015.02.012.
    American Publication Health Association (APHA), 2005. Standard Methods for Examination of Water and Wastewater (21st Edition). American Public Health Association, Washington DC.
    Andrade, L.M., Tito, C.A., Mascarenhas, C., Lima, F.A., Dias, M., Andrade, C.J., Mendes, M.A., Nascimento, C.A.O., 2021. Chlorella vulgaris phycoremediation at low Cu2+ contents: Proteomic profiling of microalgal metabolism related to fatty acids and CO2 fixation. Chemosphere 284, 131272. https://doi.org/10.1016/j.chemosphere.2021.131272.
    Arita, A., Costa, M., 2009. Epigenetics in metal carcinogenesis: Nickel, arsenic, chromium and cadmium. Metallomics 1(3), 222-228. https://doi.org/10.1039/b903049b.
    Arnon, D.I., 1949. Copper enzyme in isolated chloroplasts: Polyphenol oxidase in Beta vulgaris. Plant Physiol. 24(1), 267-272.
    Balaji, S., Kalaivani, T., Sushma, B., Pillai, C.V., Shalini, M., Rajasekaran, C., 2016. Characterization of sorption sites and differential stress response of microalgae isolates against tannery effluents from ranipet industrial area-An application towards phycoremediation. Int. J. Phytorem. 18(8), 747-753. https://doi.org/10.1080/15226514.2015.1115960.
    Baldrian, P., Gabriel, J., 2003. Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. FEMS Microbiol. Lett. 220(2), 235-240. https://doi.org/10.1016/S0378-1097(03)00102-2.
    Barhoumi, L., Dewez, D., 2013. Toxicity of superparamagnetic iron oxide on green alga Chlorella vulgaris. BioMed. Res. Int., 2013, 647974. https://doi.org/10.1155/2013/647974.
    Bureau of Indian Standards (BIS), 2012. Indian Standards Drinking Water-Specification (Second Revision) (IS-10500:2012). Bureau of Indian Standards, New Delhi.
    Central Water Commission (CWC), 2018. Report of Central Water Commission. Department of Water Resources, Government of India, New Delhi.
    Chia, M.A., Lombardi, A.T., Melao, M.D.G.G., Parrish, C.C., 2013. Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations. Aquat. Toxicol. 128-129, 171-182. https://doi.org/10.1016/j.aquatox.2012.12.004.
    Cho, D.H., Ramanan, R., Kim, B.H., Lee, J., Kim, S., Yoo, C., Choi, G.G., Oh, H.M., Ki, H.S., 2013. Novel approach for the development of axenic microalgal cultures from environmental samples. J. Phycol. 49(4), 802-810. https://doi.org/10.1111/jpy.12091.
    Costa, M., Davidson, T.L., Chen, H., Ke, Q., Zhang, P., Yan, Y., Huang, C., Kluz, T., 2005. Nickel carcinogenesis: Epigenetics and hypoxia signalling. Mutation Research 592(1-2), 79-88. https://doi.org/10.1016/j.mrfmmm.2005.06.008.
    Danouche, M., El Ghachtouli, N., El Arroussi, H., 2021. Phycoremediation mechanisms of heavy metals using living green microalgae: Physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 7(7), e07609. https://doi.org/10.1016/j.heliyon.2021.e07609.
    Deshmukh, S., Bala, K., Kumar, R., 2019. Selection of microalgae species based on their lipid content, fatty acid profile and apparent fuel properties for biodiesel production. Environ. Sci. Pollut. Res. 26, 24462-24473. https://doi.org/10.1007/s11356-019-05692-z.
    Elangovan, N.S., Dharmendirakumar, M., 2013. Assessment of groundwater quality along the Cooum River, Chennai, Tamil Nadu, India. J. Chem. 2013, 672372. https://doi.org/10.1155/2013/672372.
    Giridharan, L., Venugopal, T., Jayaprakash, M., 2010. Identification and evaluation of hydrogeochemical processes in river Cooum, South India. Environ. Monit. Assess.162, 277-289. https://doi.org/10.1007/s10661-009-0795-y.
    Guleri, S., Saxena, A., Singh, K.J., Rinku, R., Dhanker, R., Kapoor, N., Tiwari, A., 2020. Phycoremediation: A novel and synergistic approach in wastewater remediation. J. Microbiol. Biotechnol. Food Sci. 10(1), 98-106. https://doi.org/10.15414/jmbfs.2020.10.1.98-106.
    Gurage, K.S., Goswami, P., Watanabe, I., Abeykoon, S., Prabhasankar, V.P., Binu, K.R., Joshua, D.I., Balakrishna, K., Akiba, M., Munuswamy, N., 2016. Trace element distribution and risk assessment in South Indian surface waterways. Int. J. Environ. Sci. Technol. 14, 1–8. https://doi.org/10.1007/s13762-016-1129-6.
    Huang, L., Zhou, M., Lv, J., Chen, K., 2020. Trends in global research in forest carbon sequestration: A bibliometric analysis. J. Clean. Prod. 252, 119908. https://doi.org/10.1016/j.jclepro.2019.119908.
    International Agency for Research on Cancer (IARC), 2012. Nickel and nickel compounds. In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. IARC, Lyon, pp. 169-218. http://monographs.iarc.fr/ENG/Monographs/vol100C/mono100C.pdf.
    Jaiswal, M., Gupta, S.K., Chabukdhara, M., Nasr, M., Nema, A.K., Hussain, J., Malik, T., 2022. Heavy metal contamination in the complete stretch of Yamuna River: A fuzzy logic approach for comprehensive health risk assessment. PLoS ONE 17(8), e0272562. https://doi.org/10.1371/journal.pone.0272562.
    Kalaivani, T.R., Dheenadayalan, M.S., 2013. Seasonal fluctuation of heavy metal pollution in surface water. Int. Res. J. Environ. Sci. 2(12), 66-73.
    Khan, R., Saxena, A., Shukla, S., 2020. Evaluation of heavy metal pollution for River Gomti, in parts of Ganga Alluvial Plain, India. SN Appl. Sci. 2, 1451. https://doi.org/10.1007/s42452-020-03233-9.
    Kratochvil, D., Volesky, B., 1998. Advances in the biosorption of heavy metals. Trends Biotechnol. 16(7), 291-300. https://doi.org/10.1016/S0167-7799(98)01218-9.
    Lalwani, D., Ruan, Y., Taniyasu, S., Yamazaki, E., Kumar, N.J.I., Lam, P.K.S., Wang, W., Yamashita, N., 2020. Nationwide distribution and potential risk of bisphenol analogues in Indian water. Ecotoxicol. Environ. Saf. 200, 110718. https://doi.org/10.1016/j.ecoenv.2020.110718.
    Leong, Y.K., Chang, J.S., 2020. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. 303, 122886. https://doi.org/10.1016/j.biortech.2020.122886.
    Li, C., Zheng, C., Fu, H., Zhai, S., Hu, F., Naveed, S., Zhang, C., Ge, Y., 2021. Contrasting detoxification mechanisms of Chlamydomonas reinhardtii under Cd and Pb stress. Chemosphere 274, 129771. https://doi.org/10.1016/j.chemosphere.2021.129777.
    Long, X.T., Liu, F., Zhou, X., Pi, J., Yin, W., Li, F., Huang, S.P., Ma, F., 2021. Estimation of spatial distribution and health risk by arsenic and heavy metals in shallow groundwater around Dongting Lake plain using GIS mapping. Chemosphere 269, 128698. https://doi.org/10.1016/j.chemosphere.2020.128698.
    Martin, T.D., 2003. Determination of Trace Elements in Drinking Water by Axially Viewed Inductively Coupled Plasma-Atomic Emission Spectrometry. U.S. Environmental Protection Agency Report EPA/600/R-06/115, Revision 4.2. USEPA, Washington DC.
    Mukhopadhyay, M., Sampath, S., Munoz-Arnanz, J., Jimenez, B., Chakraborty, P., 2020. Plasticizers and bisphenol A in Adayar and Cooum riverine sediments, India: Occurrences, sources and risk assessment. Environmental Geochemistry and Health 42, 2789-2802. https://doi.org/10.1007/s10653-020-00516-3.
    Navakoudis, A.M.E., Ververidis, K.P.F., 2018. Microalgae: A potential tool for remediating aquatic environments from toxic metals. Int. J. Environ. Sci. Technol. 15(8), 1815-1830.
    Niu, Y., Chen, F., Li, Y., Ren, B., 2020. Trends and sources of heavy metal pollution in global river and lake sediments from 1970 to 2018. In: de Voogt, P. (Ed.), Reviews of Environmental Contamination and Toxicology, 257. Springer, Cham, pp. 1-35. https://doi.org/10.1007/398_2020_59.
    Prasad, S., Saluja, R., Joshi, V., Garg, J.K., 2020. Heavy metal pollution in surface water of the Upper Ganga River, India: Human health risk assessment. Environ. Monit. Assess. 192, 742. https://doi.org/10.1007/s10661-020-08701-8.
    Rai, U.N., Singh, N.K., Upadhyay, A.K., Verma, S., 2013. Chromate tolerance and accumulation in Chlorella vulgaris L.: Role of antioxidant enzymes and biochemical changes in detoxification of metals. Bioresour. Technol. 136, 604 - 609. https://doi.org/10.1016/j.biortech.2013.03.043.
    Rajan, S., Geethu, V., Sampath, S., Chakraborty, P., 2019. Occurrences of polycyclic aromatic hydrocarbon from Adayar and Cooum Riverine sediment in Chennai city, India. Int. J. Environ. Sci. Technol. 16, 7695-7704. https://doi.org/10.1007/s13762-018-2125-9.
    Rugnini, L., Costa, G., Congestri, R., Bruno, L., 2017. Testing of two different strains of green microalgae for Cu and Ni removal from aqueous media. Sci. Total Environ. 601-602, 959-967. https://doi.org/10.1016/j.scitotenv.2017.05.222.
    Ryuko, S., Ma, Y., Ma, N., Sakaue, M., Kuno, T., 2012. Genome-wide screen reveals novel mechanisms for regulating cobalt uptake and detoxification in fission yeast. Molecular Genetics & Genomics 287, 651-662. https://doi.org/10.1007/s00438-012-0705-9.
    Saravanan, S.P., Desmet, M., Kanniperumal, A.N.P., Ramasamy, S., Shumskikh, N., Grosbios, C., 2019. Geochemical footprint of megacities of river sediments: A case study of the fourth most populous area in India, Chennai. Minerals 9(11), 688-708. https://doi.org/10.3390/min9110688.
    Sharma, G.K., Khan, S.A., Shrivastava, M., Bhattacharyya, R., Sharma, A., Gupta, D.K., Kishore, P., Gupta, N., 2021. Circular economy fertilization: Phycoremediated algal biomass as biofertilizers for sustainable crop production. J. Environ. Manag. 287, 112295. https://doi.org/10.1016/j.jenvman.2021.112295.
    Singh, D.V., Bhat, R.A., Upadhyay, A.K., Singh, R., Singh, D.P., 2021. Microalgae in aquatic environs: A sustainable approach for remediation of heavy metals and emerging contaminants. Environ. Technol. Innov. 21, 101340. https://doi.org/10.1016/j.eti.2020.101340.
    Singh, K.P., Malik, A., Sinha, S., 2005. Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques-A case study. Anal. Chim. Acta 538(1-2), 355-374. https://doi.org/10.1016/j.aca.2005.02.006.
    Sun, J., Cheng, J., Yang, Z., Li, K., Zhou, J., Cen, K., 2015. Microstructures and functional groups of Nannochloropsis sp. cells with arsenic adsorption and lipid accumulation. Bioresour. Technol. 194, 305-311. https://doi.org/10.1016/j.biortech.2015.07.041.
    Travieso, L., Canizares, R.O., Borja, R., Benitez, F., Dominguez, A.R., Dupeyron, R., Valiente, V., 1999. Heavy metal removal by microalgae. Bull. Environ. Contam. Toxicol. 62, 144-151. https://doi.org/10.1007/s001289900853.
    Ubando, A.T., Africa, A.D.M., Maniquiz-Redillas, M.C., Culaba, A.B., Chen, W.H., Chang, J.S., 2021. Microalgal biosorption of heavy metals: A comprehensive bibliometric review. J. Hazard. Mater. 402, 123431. https://doi.org/10.1016/j.jhazmat.2020.123431.
    Uchimiya, M., Bannon, D.I., Wartelle, L.H., 2012. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil. J. Agric. Food. Chem. 60(7), 1798-1809. https://doi.org/10.1021/jf2047898.
    Valera, P., Zavattari, P., Albanese, S., Cicchella, D., Dinelli, E., Lima, A., De Vivo, B., 2014. A correlation study between multiple sclerosis and type 1 diabetes incidences and geochemical data in Europe. Environmental Geochemistry and Health 36, 79-98. https://doi.org/10.1007/s10653-013-9520-4.
    Van Den Hende, S., Beelen, V., Bore, G., Boon, N., Vervaeren, H., 2014. Upscaling aquaculture wastewater treatment by microalgal bacterial flocs: From lab reactors to an outdoor raceway pond. Bioresour. Technol. 159, 342-354. https://doi.org/10.1016/j.biortech.2014.02.113.
    World Health Organization (WHO), 2008. Guidelines for Drinking-water Quality: Incorporating 1st and 2nd Addenda, Vol. 1, Recommendations, 3rd Edition. WHO, Geneva. https://apps.who.int/iris/handle/10665/204411.
    Wu, J.T., Hsieh, M.T., Kow, L.C., 1998. Role of proline accumulation in response to toxic copper in Chlorella sp. (Chlorophyceae) cells. J. Phycol. 34(1), 113-117. https://doi.org/10.1046/j.1529-8817.1998.340113.x.
    Xin, B., Chen, B., Duan, N., Zhou, C., 2011. Extraction of manganese from electrolytic manganese residue by bioleaching. Bioresour. Technol. 102(2), 1683-1687. https://doi.org/10.1016/j.biortech.2010.09.107.
    Yadav, G., Shanmugam, S., Sivaramakrishnan, R., Kumar, D., Mathimani, T., Brindhadevi, K., Pugazhendhi, A., Rajendran, K., 2021. Mechanism and challenges behind algae as a wastewater treatment choice for bioenergy production and beyond. Fuel 285, 119093. https://doi.org/10.1016/j.fuel.2020.119093.
    Yan, C., Qu, Z., Wang, J., Cao, L., Han, Q., 2022. Microbial bioremediation of heavy metal pollution in water: Recent advances, challenges, and prospects. Chemosphere 286, 131870. https://doi.org/10.1016/j.chemosphere.2021.131870.
    Yang, J., Cao, J., Xing, G., Yuan, H., 2015. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour. Technol. 175, 537-544. https://doi.org/10.1016/j.biortech.2014.10.124.
    Zhou, H., Zhao, X., Kumar, K., Kuentz, T., Zhang, Y., Gross, M., Wen, Z., 2021. Removing high concentration of nickel (II) ions from synthetic wastewater by an indigenous microalgae consortium with a resolving algal biofilm (RAB) system. Algal Res. 59, 102464. https://doi.org/10.1016/j.algal.2021.102464.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (50) PDF downloads(1) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint