Volume 17 Issue 1
Mar.  2024
Turn off MathJax
Article Contents
Wen-zhuo Wang, Zeng-chuan Dong, Tian-yan Zhang, Li Ren, Lian-qing Xue, Teng Wu. 2024: Mixed D-vine copula-based conditional quantile model for stochastic monthly streamflow simulation. Water Science and Engineering, 17(1): 13-20. doi: 10.1016/j.wse.2023.05.004
Citation: Wen-zhuo Wang, Zeng-chuan Dong, Tian-yan Zhang, Li Ren, Lian-qing Xue, Teng Wu. 2024: Mixed D-vine copula-based conditional quantile model for stochastic monthly streamflow simulation. Water Science and Engineering, 17(1): 13-20. doi: 10.1016/j.wse.2023.05.004

Mixed D-vine copula-based conditional quantile model for stochastic monthly streamflow simulation

doi: 10.1016/j.wse.2023.05.004
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No. 52109010), the Postdoctoral Science Foundation of China (Grant No. 2021M701047), and the China National Postdoctoral Program for Innovative Talents (Grant No. BX20200113).

  • Received Date: 2022-07-20
  • Accepted Date: 2023-04-24
  • Available Online: 2024-03-05
  • Copula functions have been widely used in stochastic simulation and prediction of streamflow. However, existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months. To address this limitation, this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations. This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas. The up-to-down sequential method, which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach, was used to determine the structures of multivariate D-vine copulas. The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station, the inflow control station of the Longyangxia Reservoir in the Yellow River Basin. The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow. This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization.

     

  • loading
  • Aas, K., Czado, C., Frigessi, A., Bakken, H., 2009. Pair-copula constructions of multiple dependence. Insurance Mathematics & Economics 44(2), 182-198. https://doi.org/10.1016/j.insmatheco.2007.02.001.
    Bedford, T., Cooke, R.M., 2001. Probability density decomposition for conditionally dependent random variables modeled by vines. Annals of Mathematics and Artificial Intelligence 32, 245-268. https://doi.org/10.1023/a:1016725902970.
    Bevacqua, E., Maraun, D., Haff, I.H., Widmann, M., Vrac, M., 2017. Multivariate statistical modelling of compound events via pair-copula constructions: Analysis of floods in Ravenna (Italy). Hydrology and Earth System Sciences 21(6), 2701-2723. https://doi.org/10.5194/hess-21-2701-2017.
    Burnham, K.P., Anderson, D.R., 2004. Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods & Research 33(2), 261-304. https://doi.org/10.1177/0049124104268644.
    Clayton, D.G., 1978. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65(1), 141-151. https://doi.org/10.1093/biomet/65.1.141.
    Coxon, G., Freer, J., Westerberg, I.K., Wagener, T., Woods, R., Smith, P.J., 2015. A novel framework for discharge uncertainty quantification applied to 500 UK gauging stations. Water Resources Research 51(7), 5531-5546. https://doi.org/10.1002/2014wr016532.
    Delignette-Muller, M.L., Dutang, C., 2015. fitdistrplus: An R package for fitting distributions. Journal of Statistical Software 64(4), 1-34. https://doi.org/10.18637/jss.v064.i04.
    Dissmann, J., Brechmann, E.C., Czado, C., Kurowicka, D., 2013. Selecting and estimating regular vine copula and application to financial returns. Computational Statistics & Data Analysis 59, 52-69. https://doi.org/10.1016/j.csda.2012.08.010.
    Fang, H.B., Fang, K.T., Kotz, S., 2002. The meta-elliptical distributions with given marginals. Journal of Multivariate Analysis 82(2), 1-16. https://doi.org/10.1006/jmva.2001.2017.
    Fischer, M., Kock, C., Schluter, S., Weigert, F., 2009. An empirical analysis of multivariate copula models. Quantitative Finance 9(7), 839-854. https://doi.org/10.1080/14697680802595650.
    Frank, M.J., 1979. On the simultaneous associativity of F(x,y) and x + y - F(x, y). Aequationes Mathematicae 19, 194-226. https://doi.org/10.1007/BF02189866.
    Genest, C., Favre, A.C., 2007. Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering 12, 347-368. https://doi.org/10.1061/(asce)1084-0699(2007)12:4(347).
    Gumbel, E.J., 1960. Distributions des valeurs extremes en plusieurs dimensions. Publ. Inst. Statist. Univ. Paris 9, 171-173.
    Ilic, A., Prohaska, S., Radivojevic, D., Trajkovic, S., 2021. Multidimensional approaches to calculation of design floods at confluences-PROIL model and copulas. Environmental Modeling & Assessment 26, 565-579. https://10.1007/s10666-021-09748-8.
    Joe, H., 1996. Families of m-variate distributions with given margins and m(m - 1)/2 bivariate dependence parameters. In: Distributions with Fixed Marginals and Related Topics. Institute of Mathematical Statistics, Hayward.
    Joe, H., 1997. Multivariate Models and Multivariate Dependence Concepts. Springer, New York.
    Lall, U., Devineni, N., Kaheil, Y., 2016. An empirical, nonparametric simulator for multivariate random variables with differing marginal densities and nonlinear dependence with hydroclimatic applications. Risk Analysis 36(1), 57-73. https://doi.org/10.1111/risa.12432.
    Li, C., Singh, V.P., Mishra, A.K., 2013. Monthly river flow simulation with a joint conditional density estimation network. Water Resources Research 49(6), 3229-3242. https://doi.org/10.1002/wrcr.20146.
    Nadarajah, S., 2007. Exact distribution of the peak streamflow. Water Resources Research 43(2), W02501. https://doi.org/10.1029/2006wr005300.
    Oh, D.H., Parron, A.J., 2017. Modeling dependence in high dimensions with factor copulas. Journal of Business & Economic Statistics 35(1), 139-154. https://doi.org/10.1080/07350015.2015.1062384.
    Pereira, G., Veiga, A., 2018. PAR(p)-vine copula based model for stochastic streamflow scenario generation. Stochastic Environmental Research and Risk Assessment 32, 833-842. https://doi.org/10.1007/s00477-017-1411-2.
    Posada, D., Buckley, T.R., 2004. Model selection and model averaging in phylogenetics: Advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53(5), 793-808. https://doi.org/10.1080/10635150490522304.
    Razmkhah, H., Fararouie, A., Ravari, A.R., 2022. Multivariate flood frequency analysis using bivariate copula functions. Water Resources Management 36, 729-743. https://doi.org/10.1007/s11269-021-03055-3.
    Rezaeianzadeh, M., Stein, A., Cox, J.P., 2016. Drought forecasting using Markov chain model and artificial neural networks. Water Resources Management 30, 2245-2259. https://doi.org/10.1007/s11269-016-1283-0.
    Sharma, A., O'Neill, R., 2002. A nonparametric approach for representing interannual dependence in monthly streamflow sequences. Water Resources Research 38(7), WR000953. https://doi.org/10.1029/2001wr000953.
    Sklar, A., 1959. Fonctions de repartition a n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8, 229-231.
    Slater, L.J., Villarini, G., 2018. Enhancing the predictability of seasonal streamflow with a statistical-dynamical approach. Geophysical Research Letters 45(13), 6504-6513. https://doi.org/10.1029/2018GL077945.
    Tosunoglu, F., Gurbuz, F., Ispirli, M., 2020. Multivariate modeling of flood characteristics using vine copulas. Environmental Earth Sciences 79, 459. https://doi.org/10.1007/s12665-020-09199-6.
    Wagenmakers, E.J., Farrell, S., 2004. AIC model selection using Akaike weights. Psychonomic Bulletin & Review 11, 192-196. https://doi.org/10.3758/bf03206482.
    Wang, W., Dong, Z., Lall, U., Dong, N., Yang, M., 2019. Monthly streamflow simulation for the headwater catchment of the Yellow River Basin with a hybrid statistical-dynamical model. Water Resources Research 55(9), 7606-7621. https://doi.org/10.1029/2019WR025103.
    Xu, C., 2021. Issues influencing accuracy of hydrological modeling in a changing environment. Water Sci. Eng. 14(2), 167-170. https://doi.org/10.1016/j.wse.2021.06.005.
    Yin, J., Guo, S., Liu, Z., Yang, G., Zhong, Y., Liu, D., 2018. Uncertainty analysis of bivariate design flood estimation and its impacts on reservoir routing. Water Resources Management 32, 1795-1809. https://doi.org/10.1007/s11269-018-1904-x.
    Yin, J., Guo, S., Gentine, P., Sullivan, S.C., Gu, L., He, S., Chen, J., Liu, P., 2021. Does the hook structure constrain future flood intensification under anthropogenic climate warming? Water Resources Research 57(3), e2020WR028491. https://doi.org/10.1029/2020wr028491.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (78) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return