Citation: | Yvelisse Pérez, Enmanuel Vargas, Daniel García-Cortés, William Hernández, Humberto Checo, Ulises Jáuregui-Haza. 2024: Efficiency and effectiveness of systems for the treatment of domestic wastewater based on subsurface flow constructed wetlands in Jarabacoa, Dominican Republic. Water Science and Engineering, 17(2): 118-128. doi: 10.1016/j.wse.2023.08.004 |
Almuktar, S.A., Abed, S.N., Scholz, M., 2018. Wetlands for wastewater treatment and subsequent recycling of treated effluent:A review. Environ. Sci. Pollut. Control Ser. 25(24), 23595-23623. https://doi.org/10.1007/s11356-018-2629-3.
|
Arroyo, P., Ansola, G., de Luis, E., 2010. Effectiveness of a full-scale constructed wetland for the removal of metals from domestic wastewater. Water, Air, Soil Pollut., 210(1-4), 473-481. https://doi.org/10.1007/s11270-009-0272-9.
|
Arteaga-Cortez, V.M., Quevedo-Nolasco, A., del Valle-Paniagua, D.H., Castro-Popoca, M., Bravo-Vinaja, A., Ramirez-Zierold, J.A., 2019. State of art:A current review of the mechanisms that make the artificial wetlands for the removal of nitrogen and phosphorus. Tecnologia y Ciencias del Agua 10(5), 319-342. https://doi.org/10.24850/j-tyca-2019-05-12.
|
Baird, R.B., Eaton, A.D., Rice, E.W., 2017. Standard Methods for the Examination of Water and Wastewater (23rd ed.). American Public Health Association, Washington DC.
|
Baldovi, A.A., de Barros Aguiar, A.R., Benassi, R.F., Vymazal, J., de Jesus, T.A., 2021. Phosphorus removal in a pilot scale free water surface constructed wetland:Hydraulic retention time, seasonality and standing stock evaluation. Chemosphere 266, 128939. https://doi.org/10.1016/j.chemosphere.2020.128939.
|
Batool, A., Saleh, A., 2019. Ecotoxicology and environmental safety removal of toxic metals from wastewater in constructed wetlands as a green technology; catalyst role of substrates and chelators. Ecotoxicol. Environ. Saf. 189, 109924. https://doi.org/10.1016/j.ecoenv.2019.109924.
|
Brisson, J., Chazarenc, F., 2009. Maximizing pollutant removal in constructed wetlands:Should we pay more attention to macrophyte species selection?Sci. Total Environ. 407(13), 3923-3930. https://doi.org/10.1016/j.scitotenv.2008.05.047.
|
Burgos, V., Araya, F., Reyes-Contreras, C., Vera, I., Vidal, G., 2017. Performance of ornamental plants in mesocosm subsurface constructed wetlands under different organic sewage loading. Ecol. Eng. 99, 246-255. https://doi.org/10.1016/j.ecoleng.2016.11.058.
|
Centeno Mora, E., Murillo Marín, A., 2019. Tipologia de las tecnologias de tratamiento de aguas residuales ordinarias instaladas en Costa Rica. Revista de Ciencias Ambientales 53(2), 97-110. https://doi.org/10.15359/rca.53-2.5.
|
Centeno Mora, E., Murillo Marín, A., 2020. Comparacion de tecnologias para el tratamiento sostenible de aguas residuales ordinarias en pequeñas comunidades de Costa Rica:Demanda de área, costo constructivo y costo de operacion y mantenimiento. Ingenieria 30(1), 1-24. https://doi.org/10.15517/ri.v30i1.38898.
|
Du Laing, G., Vanthuyne, D.R.J., Vandecasteele, B., Tack, F.M.G., Verloo, M.G., 2007. Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil. Environ. Pollut. 147(3), 615-625. https://doi.org/10.1016/j.envpol.2006.10.004.
|
Duarte, A.A., Canais-Seco, T., Peres, J.A., Bentes, I., Pinto, J., 2010. Sustainability indicators of subsurface flow constructed wetlands in Portuguese small communities. WSEAS Trans. Environ. Dev. 6(9), 625-634.
|
Freeman, A.I., Widdowson, S., Murphy, C., Cooper, D.J., 2019. Economic assessment of aerated constructed treatment wetlands using whole life costing. Water Sci. Technol. 80(1), 75-85. https://doi.org/10.2166/wst.2019.246.
|
Garcia-Avila, F., Patino-Chavez, J., Zhinin-Chimbo, F., Donoso-Moscoso, S., Del Pino, F., L., Aviles-Anazco, A., 2019. Performance of Phragmites Australis and Cyperus Papyrus in the treatment of municipal wastewater by vertical flow subsurface constructed wetlands. Int. Soil Water Conserv. Res. 7(3), 286-296. https://doi.org/10.1016/j.iswcr.2019.04.001.
|
Grinberga, L., 2020. Water quality assurance with constructed wetlands in Latvia. In:Water Resources Quality and Management in Baltic Sea Countries, Springer Nature Switzerland AG, Cham, pp. 87-103.
|
Hussain, M.I., Qureshi, A.S.J.E.S., 2020. Health risks of heavy metal exposure and microbial contamination through consumption of vegetables irrigated with treated wastewater at Dubai, UAE. Environ. Sci. Pollut. Control Ser. 27, 11213-11226. https://doi.org/10.1007/s11356-019-07522-8.
|
Jana, S., Kro, L., 2009. Removal of trace elements in three horizontal sub-surface flow constructed wetlands in the Czech Republic. Environ. Pollut. 157(4), 1186-1194. https://doi.org/10.1016/j.envpol.2008.12.003.
|
Khalifa, M.E., El-Reash, Y.G.A., Ahmed, M.I., Rizk, F.W., 2020. Effect of media variation on the removal efficiency of pollutants from domestic wastewater in constructed wetland systems. Ecol. Eng. 143, 105668. https://doi.org/10.1016/j.ecoleng.2019.105668.
|
Khan, Z.M., Kanwar, R.M.A., Farid, H.U., Sultan, M., Arsalan, M., Ahmad, M., Shakoor, M., Aslam, M.M.A. 2019. Wastewater evaluation for multan, Pakistan:Characterization and agricultural reuse. Pol. J. Environ. Stud. 28(4), 2159-2174. https://doi.org/10.15244/PJOES/90838.
|
Kulshreshtha, N.M., Verma, V., Soti, A., Brighu, U., Gupta, A.B., 2022. Exploring the contribution of plant species in the performance of constructed wetlands for domestic wastewater treatment. Bioresour. Technol. Rep. 18, 101038. https://doi.org/10.1016/j.biteb.2022.101038.
|
Li, J., Fan, J., Zhang, J., Hu, Z., Liang, S., 2018a. Preparation and evaluation of wetland plant-based biochar for nitrogen removal enhancement in surface flow constructed wetlands. Environ. Sci. Pollut. Control Ser. 25(14), 13929-13937. https://doi.org/10.1007/s11356-018-1597-y.
|
Li, X., Ding, A., Zheng, L., Anderson, B.C., Kong, L., Wu, A., Xing, L., 2018b. Relationship between design parameters and removal efficiency for constructed wetlands in China. Ecol. Eng., 123, 135-140. https://doi.org/10.1016/j.ecoleng.2018.08.005.
|
Machado, A.I., Beretta, M., Fragoso, R., Duarte, E., 2017. Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil. J. Environ. Manag. 187, 560-570. https://doi.org/10.1016/j.jenvman.2016.11.015.
|
Marín-Muniz, J.L., Hernandez, M.E., Gallegos-Pérez, M.P., Amaya-Tejeda, S.I., 2020. Plant growth and pollutant removal from wastewater in domiciliary constructed wetland microcosms with monoculture and polyculture of tropical ornamental plants. Ecol. Eng. 147, 105658. https://doi.org/10.1016/j.ecoleng.2019.105658.
|
Mello, D., Carvalho, K.Q., Passig, F.H., Freire, F.B., Borges, A.C., Lima, M.X., Marcelino, G.R., 2019. Nutrient and organic matter removal from low strength sewage treated with constructed wetlands. Environ. Technol. 40(1), 11-18. https://doi.org/10.1080/09593330.2017.1377291.
|
Moya-Pons, F., Ledesma, R., de Jesus, I., Pérez-Sanchez, N., 2003. Norma Ambiental Sobre Calidad del Agua y Control de Descargas. Secretaria de Estado de Medio Ambiente y Recursos Naturales, Republica Dominicana.
|
Nguyen, H.T.T., Chao, H.R., Chen, K.C., 2019. Treatment of organic matter and tetracycline in water by using constructed wetlands and photocatalysis. Appl. Sci. 9(13), 2680. https://doi.org/10.3390/app9132680.
|
Nivala, J., Kahl, S., Boog, J., Afferden, M.V., Reemtsma, T., Muller, R.A., 2019. Dynamics of emerging organic contaminant removal in conventional and intensified subsurface flow treatment wetlands. Sci. Total Environ. 649, 1144-1156. https://doi.org/10.1016/j.scitotenv.2018.08.339.
|
Norton-Brandao, D., Scherrenberg, S.M., Lier, J.B.V., 2013. Reclamation of used urban waters for irrigation purposes-a review of treatment technologies. J. Environ. Manag. 122, 85-98. https://doi.org/10.1016/j.jenvman.2013.03.012.
|
Noyola, A., Padilla-Rivera, A., Morgan-Sagastume, J. M., Patricia Guereca, L., Hernandez-Padilla, F., 2012. Typology of municipal wastewater treatment technologies in Latin America. Clean:Soil, Air, Water 40(9), 926-932. https://doi.org/10.1002/clen.201100707.
|
Pedescoll, A., Sidrach-Cardona, R., Hijosa-Valsero, M., Becares, E., 2015. Design parameters affecting metals removal in horizontal constructed wetlands for domestic wastewater treatment. Ecol. Eng. 80, 92-99. https://doi.org/10.1016/j.ecoleng.2014.10.035.
|
Pérez-Salazar, R., Mora-Aparicio, C., Alfaro-Chinchilla, C., Sasa-Marín, J., Scholz, C., Rodriguez-Corrales, J.A., 2019. Biogardens as constructed wetlands in tropical climate:A case study in the central pacific coast of Costa Rica. Sci. Total Environ. 658, 1023-1028. https://doi.org/10.1016/j.scitotenv.2018.12.259.
|
Pérez, Y.A., García-Cortés, D., Jauregui-Haza, U.J., 2022. Humedales construidos como alternativa de tratamiento de aguas residuales en zonas urbanas:Una revision. Ecosistemas 31(1), 2279-2279. https://doi.org/10.7818/ECOS.2279.
|
Puigagut, J., Villaseñor, J., Salas, J.J., Becares, E., Garcia, J., 2007. Subsurface-flow constructed wetlands in Spain for the sanitation of small communities:A comparative study. Ecol. Eng. 30, 312-319. https://doi.org/10.1016/j.ecoleng.2007.04.005.
|
Ramprasad, C., Smith, C.S., Memon, F.A., Philip, L., 2017. Removal of chemical and microbial contaminants from greywater using a novel constructed wetland:GROW. Ecol. Eng. 106, 55-65. https://doi.org/10.1016/j.ecoleng.2017.05.022.
|
Ross, S., 1989. Soil Processes. Routledge, New York.
|
Rousso, B.Z., Pelissari, C., Santos, M.O.D., Sezerino, P.H., 2019. Hybrid constructed wetlands system with intermittent feeding applied for urban wastewater treatment in South Brazil. J. Water, Sanit. Hyg. Dev. 9(3), 559-570. https://doi.org/10.2166/washdev.2019.010/565279.
|
Ruan, W., Cai, H., Xu, X., Man, Y., Wang, R., Tai, Y., Chen, Z., Vymazal, J., Chen, J., Yang, Y., et al., 2021. Efficiency and plant indication of nitrogen and phosphorus removal in constructed wetlands:A field-scale study in a frost-free área. Sci. Total Environ., 799, 149301. https://doi.org/10.1016/j.scitotenv.2021.149301.
|
Saeed, T., Khan, T., 2019. Constructed wetlands for industrial wastewater treatment:Alternative media, input biodegradation ratio and unstable loading. J. Environ. Chem. Eng. 7(2), 103042. https://doi.org/10.1016/j.jece.2019.103042.
|
Sharma, R., Vymazal, J., Malaviya, P., 2021. Application of floating treatment wetlands for stormwater runoff:A critical review of the recent developments with emphasis on heavy metals and nutrient removal. Sci. Total Environ. 777, 146044. https://doi.org/10.1016/j.scitotenv.2021.146044.
|
Singh, M., Srivastava, R.K., 2016. Feasibility of using tuberose (P. tuberosa L.) in horizontal subsurface flow constructed wetland for heavy metal removal from domestic wastewater. Environ. Prog. Sustain. Energy 35(1), 125-132. https://doi.org/10.1002/ep.12214.
|
Song, X., Ding, Y., Wang, Y., Wang, W., Wang, G., Zhou, B., 2015. Comparative study of nitrogen removal and bio-film clogging for three filter media packing strategies in vertical flow constructed wetlands. Ecol. Eng. 74, 1-7. https://doi.org/10.1016/j.ecoleng.2014.08.008.
|
Stefanakis, A.I., 2020. Constructed wetlands:Description and benefits of an eco-tech water treatment system. In:Waste Management:Concepts, Methodologies, Tools, and Applications. IGI Publishing, Boston, pp. 503-525.
|
Tanaka, N., Ng, W.J., Jinadasa, K., 2011. Wetlands for Tropical Applications:Wastewater Treatment by Constructed Wetlands. Imperial College Press, London.
|
Tanner, C., 2001. Plants as ecosystem engineers in subsurface-flow treatment wetlands. Water Sci. Technol. 44(11-12), 9-17. https://doi.org/10.2166/wst.2001.0804.
|
Tao, W., Sauba, K., Fattah, K.P., Smith, J.R., 2017. Designing constructed wetlands for reclamation of pretreated wastewater and stormwater. Rev. Environ. Sci. Biotechnol. 16(1), 37-57. https://doi.org/10.1007/s11157-016-9419-5.
|
Temel, F.A., Avci, E., Ardali, Y., 2018. Full scale horizontal subsurface flow constructed wetlands to treat domestic wastewater by Juncus acutus and Cortaderia selloana. Int. J. Phytoremediation 20(3), 264-273. https://doi.org/10.1080/15226514.2017.1374336.
|
Torres Bojorges, A.X., Hernandez Razo, N.A., Urquieta, F., Aseret, A., Zurita Martinez, F., 2017. Evaluacion de tres sistemas de humedales hibridos a escala piloto para la remocion de nitrogeno. Rev. Int. Contam. Ambient. 33(1), 37-47. https://doi.org/10.20937/RICA.2017.33.01.03.
|
United Nations (UN), 2018. La Agenda 2030 y los Objetivos de Desarrollo Sostenible:Una Oportunidad para America Latina y el Caribe (LC/G.2681-P/Rev.3). UN, Santiago.
|
Urania Abreu, R., 2016. Formulacion Estrategia Nacional de Saneamiento de Republica Dominicana. Instituto Nacional de Aguas Potables y Alcantarillados, Santo Domingo. http://www.inapa.gob.do/index.php/proyectos/category/56-estrategia-nacional-de-saneamiento?download=81:estrategia-saneamiento-nacional.
|
Vargas, E., Pérez, Y., Hernandez, W., Checo, H., García-Cortés, D., Jauregui-Haza, U., 2021. Design and assessment of a domestic wastewater treatment system based on a constructed wetland with subsurface flow in Jarabacoa, Dominican Republic. Procedia Environmental Science:Eng. Manag. J. 8(2), 371-380.
|
Vasquez Guerra, J.S., 2019. Sistemas implementados con ingenieria Verde en el Manejo de las Aguas Residuales en la Republica Dominicana, Cso:Municipio de Jarabacoa, Ano 2018. Ph.D. Dissertation. Universidad Centro Panamericano de Estudios Superiores, Mexico.
|
Vidanage, V.V.D.N.G., Karunarathna, A.K., Alahakoon, A.M.Y.W., Jayawardene, S.M.N., 2020. Development of an effective and efficient integrated charcoal filter constructed wetland system for wastewater treatment. In:Recent Trends in Waste Water Treatment and Water Resource Management. Springer, Singapore, pp. 47-56.
|
Villamar, C.-A., Vera-Puerto, I., Rivera, D., De la Hoz, F., 2018. Reuse and recycling of livestock and municipal wastewater in Chilean agriculture:A preliminary assessment. Water 10(6), 817. https://doi.org/10.3390/w10060817.
|
Vymazal, J., 2007. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 380, 48-65. https://doi.org/10.1016/j.scitotenv.2006.09.014.
|
Vymazal, J., Brezinova, T., 2016. Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment:A review. Chem. Eng. J. 290, 232-242. https://doi.org/10.1016/j.cej.2015.12.108.
|
Vymazal, J., 2019. Is removal of organics and suspended solids in horizontal sub-surface flow constructed wetlands sustainable for twenty and more years?Chem. Eng. J. 378, 122117. https://doi.org/10.1016/j.cej.2019.122117.
|
Vymazal, J., Zhao, Y., Mander, U., 2021. Recent research challenges in constructed wetlands for wastewater treatment:A review. Ecol. Eng. 169, 106318. https://doi.org/10.1016/j.ecoleng.2021.106318.
|
Zhang, D.Q., Jinadasa, K.B.S.N., Gersberg, R.M., Liu, Y., Ng, W.J., Tan, S.K., 2014. Application of constructed wetlands for wastewater treatment in developing countries-a review of recent developments (2000-2013). J. Environ. Manag. 141, 116-131. https://doi.org/10.1016/j.jenvman.2014.03.015.
|
Zhang, D.Q., Jinadasa, K.B.S.N., Gersberg, R.M., Liu, Y., Tan, S.K., Ng, W.J., 2015. Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000-2013). J. Environ. Sci. 30, 30-46. https://doi.org/10.1016/j.jes.2014.10.013.
|