Volume 17 Issue 3
Sep.  2024
Turn off MathJax
Article Contents
Nikita P. Chokshi, Abhi Chauhan, Rahul Chhayani, Sandip Sharma, Jayesh P. Ruparelia. 2024: Preparation and application of Ag–Ce–O composite metal oxide catalyst in catalytic ozonation for elimination of Reactive Black 5 dye from aqueous media. Water Science and Engineering, 17(3): 257-265. doi: 10.1016/j.wse.2023.08.005
Citation: Nikita P. Chokshi, Abhi Chauhan, Rahul Chhayani, Sandip Sharma, Jayesh P. Ruparelia. 2024: Preparation and application of Ag–Ce–O composite metal oxide catalyst in catalytic ozonation for elimination of Reactive Black 5 dye from aqueous media. Water Science and Engineering, 17(3): 257-265. doi: 10.1016/j.wse.2023.08.005

Preparation and application of Ag–Ce–O composite metal oxide catalyst in catalytic ozonation for elimination of Reactive Black 5 dye from aqueous media

doi: 10.1016/j.wse.2023.08.005
  • Received Date: 2023-01-12
  • Accepted Date: 2023-07-28
  • Available Online: 2024-08-24
  • It is necessary to treat textile effluents before discharging them into natural water bodies as they harm the environment. Compared to conventional treatment methods, catalytic ozonation has gained attention due to its effectiveness in removing refractory organic pollutants. In this study, the coprecipitation method was used to synthesize a composite metal oxide of silver and cerium oxide, and the synthesized catalyst was used to eliminate the Reactive Black 5 (RB5) dye. X-ray diffraction, scanning electron microscopic, and Brunauer–Emmett–Teller surface area analyses were performed to characterize the synthesized catalyst. Afterwards, relevant experimental parameters, such as pH, ozone and catalyst dosages, and initial dye concentration, were investigated. The experiments revealed that the optimal experimental conditions were a pH value of 10, a catalyst dosage of 0.7 g/L, and an ozone dosage of 60 L/h. In these optimized conditions, the RB5 dye was entirely removed, and a chemical oxygen demand removal efficiency of 88% was achieved within a reaction time of 80 min. Furthermore, the recycling potential of the catalyst was tested for three cycles, and no deterioration in its activity was observed. Additionally, studies were conducted using a hydroxyl radical scavenger in order to understand the reaction pathway of the system. As a result, the indirect pathway was more dominant than the direct pathway in the system.

     

  • loading
  • Ahmed, M.A., El-Katori, E.E., Gharni, Z.H., 2013. Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol-gel method. J. Alloys Compd. 553, 19-29. https://doi.org/10.1016/j.jallcom.2012.10.038.
    Asgari, G., Faradmal, J., Nasab, H.Z., Ehsani, H., 2019. Catalytic ozonation of industrial textile wastewater using modified C-doped MgO eggshell membrane powder. Adv. Powder Technol. 30(7), 1297-1311. https://doi.org/10.1016/j.apt.2019.04.003.
    Bilinska, L, Blus, K., Gmurek, M., Ledakowicz, S., 2019. Coupling of electrocoagulation and ozone treatment for textile wastewater reuse. Chem. Eng. J. 358, 992-1001. https://doi.org/10.1016/j.cej.2018.10.093.
    Chen, H., Wang, J., 2019. Catalytic ozonation of sulfamethoxazole over Fe3O4/Co3O4 composites. Chemosphere 234, 14-24. https://doi.org/10.1016/j.chemosphere.2019.06.014.
    Chokshi, N.P., Patel, D., Atkotiya, R., Ruparelia, J., 2020. Catalytic ozonation of Reactive Black 5 in aqueous solution over a La-Co-O catalyst. J. Indian Chem. Soc. 97(3), 373-378.
    Chokshi, N.P., Ruparelia, J.P., 2020. Catalytic ozonation of Reactive Black 5 over silver-cobalt composite oxide catalyst. J. Inst. Eng. Ser. A 101, 433-443. https://doi.org/10.1007/s40030-020-00454-4.
    Chokshi, N.P., Ruparelia, J.P., 2021. Synthesis of nano Ag-La-Co composite metal oxide for degradation of RB 5 dye using catalytic ozonation process. Ozone Sci. Eng. 44(2), 182-195. https://doi.org/10.1080/01919512.2021.1901070.
    Copete-Pertuz, L.S., Perez-Grisales, M.S., Castrillon-Tobon, M., Londono, G.A.C., Garcia, G.T., Martinez, A.L.M., 2018. Decolorization of reactive black 5 dye by heterogeneous photocatalysis with TiO2/UV. Rev. Colomb. Quim. 47(2) 36-44. https://doi.org/10.15446/rev.colomb.quim.v47n2.67922.
    de Almeida, A.R., Monteiro, F.C., Monteiro, J.F.H.L., Tiburtius, E.R.L., Pessoa, C.A., 2022. Photocatalytic oxidation of textile dye using sugarcane bagasse-Nb2O5 as a catalyst. J. Photochem. Photobiol. Chem. 432, 114103. https://doi.org/10.1016/j.jphotochem.2022.114103.
    Ghuge, S.P., Saroha, A.K., 2018a. Catalytic ozonation for the treatment of synthetic and industrial effluents - application of mesoporous materials: A review. J. Environ. Manag. 211, 83-102. https://doi.org/10.1016/j.jenvman.2018.01.052.
    Ghuge, S.P., Saroha, A.K., 2018b. Catalytic ozonation of dye industry effluent using mesoporousbimetallic Ru-Cu/SBA-15 catalyst. Process Saf. Environ. Protect. 118, 125-132. https://doi.org/10.1016/j.psep.2018.06.033.
    Ghuge, S.P., Saroha, A.K., 2018c. Ozonation of Reactive Orange 4 dye aqueous solution using mesoporous Cu/SBA-15 catalytic material. J. Water Proc. Eng. 23, 217-229. https://doi.org/10.1016/j.jwpe.2018.04.009.
    Gomez-Pacheco, C.V., Sanchez-Polo, M., Rivera-Utrilla, J., Lopez-Penalver, J., 2011. Tetracycline removal from waters by integrated technologies based on ozonation and biodegradation. Chem. Eng. J. 178, 115-121. https://doi.org/10.1016/j.cej.2011.10.023.
    Gracia, J.L., Aragues, J.L., Ovelleiro, J.L., 1996. Study of the catalytic ozonation of humic substances in water and their ozonation byproducts. Ozone: Sci. Eng. 18(3), 195-208. https://doi.org/10.1080/01919519608547326.
    Hayati, F., Moradi, S., Saei, S.F., Madani, Z., Giannakis, S., Isari, A.A., Kakavandi, B., 2022. A novel, Z-scheme ZnO@AC@FeO photocatalyst, suitable for the intensification of photo-mediated peroxymonosulfate activation: Performance, reactivity and bisphenol A degradation pathways. J. Environ. Manag. 321, 115851. https://doi.org/10.1016/j.jenvman.2022.115851.
    Holkar, C.R., Jadhav, A.J., Pinjari, D.V., Mahamuni, N.M., Pandit, A.B., 2016. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manag. 182, 351-366. https://doi.org/10.1016/j.jenvman.2016.07.090.
    Issaka, E., Amu-Darko, J.N., Yakubu, S., Fapohunda, F.O., Ali, N., Bilal, M., 2022. Advanced catalytic ozonation for degradation of pharmaceutical pollutants - a review. Chemosphere 289, 133208. https://doi.org/10.1016/j.chemosphere.2021.133208.
    Jager, D., Kupka, D., Vaclavikova, M., Ivanicova, L., Gallios, G., 2018. Degradation of reactive black 5 by electrochemical oxidation. Chemosphere 190, 405-416. https://doi.org/10.1016/j.chemosphere.2017.09.126.
    Jiang, N., Hu, J., Li, J., Shang, K., Lu, N., Wu, Y., 2016. Plasma-catalytic degradation of benzene over Ag-Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas. Appl. Catal. B Environ. 184, 355-363. http://doi.org/10.1016/j.apcatb.2015.11.044.
    Jin, X., Wu, C., Fu, L., Tian, X., Wang, P., Zhou, Y., Zuo, J., 2023. Development, dilemma and potential strategies for the application of nanocatalysts in wastewater catalytic ozonation: A review. J. Environ. Sci. 124, 330-349. https://doi.org/10.1016/j.jes.2021.09.041.
    Kaptijn, Jan P., 1997. The Ecoclear® Process. Results from Full-Scale Installations. Ozone: Science & Engineering 297–305, https://doi.org/10.1080/01919519708547294.
    Kasprzyk-Hordern, B., Ziolek, M., Nawrocki, J., 2003. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl. Catal. B Environ. 46(4), 639-669. https://doi.org/10.1016/S0926-3373(03)00326-6.
    Kusvuran, E., Irmak, S., Yavuz, H.I., Samil, A., Erbatur, O., 2005. Comparison of the treatment methods efficiency for decolorization and mineralization of Reactive Black 5 azo dye. J. Hazard Mater. 119, 109-116. https://doi.org/10.1016/j.jhazmat.2004.11.017.
    Liu, X., Zhou, Z., Jing, G., Fang, J., 2013. Catalytic ozonation of Acid Red B in aqueous solution over a Fe-Cu-O. Separ. Purif. Technol. 115, 129-135. https://doi.org/10.1016/j.seppur.2013.05.005.
    Loeb, B.L., 2017. Forty years of advances in ozone technology. Rev. Ozone Sci. Eng. Ozone Sci. Eng. 40(1), 3-20. https://doi.org/10.1080/01919512.2017.1383129.
    Ma, Z., Zhu, L., Lu, X., Xing, S., Wu, Y., Gao, Y., 2014. Catalytic ozonation of p-nitrophenol over mesoporous Mn-Co-Fe oxide. Separ. Purif. Technol. 133, 357-364. https://doi.org/10.1016/j.seppur.2014.07.011.
    Mena, E., Rey, A., Beltran, F.J., 2018. TiO2 photocatalytic oxidation of a mixture of emerging contaminants: A kinetic study independent of radiation absorption based on the direct-indirect model. Chem. Eng. J. 339, 369-380. https://doi.org/10.1016/j.cej.2018.01.122.
    Moradi, M., Kakavandi, B., Bahadoran, A., Giannakis, S., Dehghanifard, E., 2022. Intensification of persulfate-mediated elimination of bisphenol A by a spinel cobalt ferrite-anchored g-C3N4 S-scheme photocatalyst: Catalytic synergies and mechanistic interpretation. Separ. Purif. Technol. 285, 120313. https://doi.org/10.1016/j.seppur.2021.120313.
    Nasseh, N., Arghavan, F.S., Rodriguez-Couto, S., Panahi, A.H., Esmati, M., A-Musawi, T.J., 2020. Preparation of activated carbon@ZnO composite and its application as a novel catalyst in catalytic ozonation process for metronidazole degradation. Adv. Powder Technol. 31(2), 875-885. https://doi.org/10.1016/j.apt.2019.12.006.
    Nawrocki, J., Kasprzyk-Hordern, B., 2010. The efficiency and mechanisms of catalytic ozonation. Appl. Catal. B Environ. 99(1-2), 27-42. https://doi.org/10.1016/j.apcatb.2010.06.033.
    Ni, C.H., Chen, J.N., 2001. Heterogeneous catalytic ozonation of 2-chlorophenol aqueous solution with alumina as a catalyst. Water Sci. Technol. 43(2), 213-220. https://doi.org/10.2166/wst.2001.0092.
    Polat, D., Balci, I., Ozbelge, T.A., 2015. Catalytic ozonation of an industrial textile wastewater in a heterogeneous continuous reactor. J. Environ. Chem. Eng. 3(3), 1860-1871. https://doi.org/10.1016/j.jece.2015.04.020.
    Pramugani, A., Shimizu, T., Goto, S., Argo, T.A., Soda, S., 2022. Decolorization and biodegradability enhancement of synthetic batik wastewater containing reactive black 5 and reactive orange 16 by ozonation. Water 14(20), 3330. https://doi.org/10.3390/w14203330.
    Qu, Z., Xu, X., Ren, H., Sun, T., Huang, L., Gao, Z., 2022. Effective mineralization of p-nitrophenol in water by heterogeneous catalytic ozonation using Ce-loaded sepiolite catalyst. J. Environ. Chem. Eng. 10(4), 108185. https://doi.org/10.1016/j.jece.2022.108185.
    Sairiam, S., Thuptimdang, P., Painmanakul, P., 2019. Decolorization of Reactive Black 5 from synthetic dye wastewater by Fenton process. Environ. Asia 12(2), 1-8. https://doi.org/10.14456/ea.2019.21.
    Sari, B., Guney, H., Turkes, S., Keskinkan, O., 2023. Reactive Black 5 removal with ozone on lab-scale and modeling. Ozone: Sci. Eng. 45(1), 50-64. https://doi.org/10.1080/01919512.2022.2035211.
    Sharma, J., Mishra, I.M., Kumar, V., 2015. Degradation and mineralization of bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2082- oxidation systems. J. Environ. Manag. 156, 266-275. https://doi.org/10.1016/j.jenvman.2015.03.048.
    Shokati fard, E., Baseri, H., 2022. ZnO-based composite catalysts for photocatalytic degradation of reactive black 5, and the optimization of process parameters. Water Environ. J. 36(3), 349-362. https://doi.org/10.1111/wej.12768.
    Song, S., He, Z., Qiu, J., Xu, L., Chen, L., 2007. Ozone assisted electrocoagulation for decolorization of C.I. Reactive Black 5 in aqueous solution: An investigation of the effect of operational parameters. Separ. Purif. Technol. 55(2), 238-245. https://doi.org/10.1016/j.seppur.2006.12.013.
    Soni, B.D., Patel, U.D., Agrawal, A., Ruparelia, J.P., 2020. A comparative study for degradation of RB5 dye using Ti/Ir0.15-Ru0.15-Sn0.6-Sb0.1 electrodes fabricated by employing two different thermal decomposition methods. SN Appl. Sci. 2, 1853. https://doi.org/10.1007/s42452-020-03657-3.
    Stoyanova, M., Slavova, I., Christoskova, St, Ivanova, V., 2014. Performance of supported nanosized cobalt and iron-cobalt mixed oxides on MgO in oxidative degradation of Acid Orange 7 azo dye with peroxymonosulfate. Appl. Catal., A: Gen. Catal. 476, 121-132. https://doi.org/10.1016/j.apcata.2014.02.024.
    Su, W., Li, Y., Hong, X., Lin, K.A., Tong, S., 2022. Catalytic ozonation of N, N-dimethylacetamide in aqueous solution by Fe3O4@SiO2@MgO composite: Optimization, degradation pathways and mechanism. J. Taiwan Inst. Chem. Eng. 135, 104380. https://doi.org/10.1016/j.jtice.2022.104380.
    Sui, M., Liu, J., Sheng, L., 2011. Mesoporous material supported manganese oxides (MnOx/MCM-41) catalytic ozonation of nitrobenzene in water. Appl. Catal. B Environ. 106(1-2), 195-203. https://doi.org/10.1016/j.apcatb.2011.05.025.
    Tehrani-Bagha, A.R., Mahmoodi, N.M., Menger, F.M., 2010. Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination 260(1-3), 34-38. https://doi.org/10.1016/j.desal.2010.05.004.
    Tian, N., Nie, Y., Tian X., Zhu, J., Wu, D., 2022. Heterogeneous catalytic ozonation over metal oxides and mechanism discussion. In: Cao H., Xie, Y., Wang, Y., Xi, J. (Eds.), Advanced Ozonation Processes for Water and Wastewater Treatment: Active Catalysts and Combined Technologies. Royal Society of Chemistry, Beijing, pp. 1-28.
    Tisa, F., Raman, A.A.A., Daud, A.M.A.W., 2014. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes. J. Environ. Manag. 146, 260-275. https://doi.org/10.1016/j.jenvman.2014.07.032.
    Wang, J., Chen, H., 2020. Catalytic ozonation for water and wastewater treatment: Recent advances and perspective. Sci. Total Environ. 704, 135249. https://doi.org/10.1016/j.scitotenv.2019.135249.
    Wang, Q., He, C., Shan, Y., Zhang, Z., Li, J., 2023. Catalytic ozonation of atenolol by Mn-Ce@Al2O3 catalysts: Efficiency, mechanism and degradation pathways. J. Environ. Chem. Eng. 11(2), 109444. https://doi.org/10.1016/j.jece.2023.109444.
    Wang, Y., Yu, G., 2022. Challenges and pitfalls in the investigation of the catalytic ozonation mechanism: A critical review. J. Hazard Mater. 436, 129157. https://doi.org/10.1016/j.jhazmat.2022.129157.
    Yin, H., Liu, J., Shi, H., Sun, L., Yuan, X., Xia, D., 2022. Highly efficient catalytic ozonation for oxalic acid mineralization with Ag2CO3 modified g-C3N4: Performance and mechanism. Process Saf. Environ. Protect. 162, 944-954. https://doi.org/10.1016/j.psep.2022.04.060.
    Zhang, H., He, Y., Lai, L., Yao, G., Lai, B., 2020. Catalytic ozonation of Bisphenol A in aqueous solution by Fe3O4-MnO2 magnetic composites: Performance, transformation pathways and mechanism. Separ. Purif. Technol. 245, 116449. https://doi.org/10.1016/j.seppur.2019.116449.
    Zhang, Z., Ai, H., Fu, M., Hu, Y., Liu, J., Ji, Y., Vasanthakumar, V., Yuan, B., 2021. A new insight into catalytic ozonation of ammonia by MgO/Co3O4 composite: The effects, reaction kinetics and mechanism. Chem. Eng. J. 418, 129461. https://doi.org/10.1016/j.cej.2021.129461.
    Zhou, L., Zhang, S., Li, Z., Liang, X., Zhang, Z., Liu, R., Yun, J., 2020. Efficient degradation of phenol in aqueous solution by catalytic ozonation over MgO/AC. J. Water Proc. Eng. 36, 101168. https://doi.org/10.1016/j.jwpe.2020.101168.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (9) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return