Volume 17 Issue 2
Jun.  2024
Turn off MathJax
Article Contents
Hamidatu Alhassan, Ying Woan Soon, Anwar Usman, Voo Nyuk Yoong. 2024: Ultrahydrophobic melamine sponge via interfacial modification with reduced graphene oxide/titanium dioxide nanocomposite and polydimethylsiloxane for oily wastewater treatment. Water Science and Engineering, 17(2): 139-149. doi: 10.1016/j.wse.2023.09.003
Citation: Hamidatu Alhassan, Ying Woan Soon, Anwar Usman, Voo Nyuk Yoong. 2024: Ultrahydrophobic melamine sponge via interfacial modification with reduced graphene oxide/titanium dioxide nanocomposite and polydimethylsiloxane for oily wastewater treatment. Water Science and Engineering, 17(2): 139-149. doi: 10.1016/j.wse.2023.09.003

Ultrahydrophobic melamine sponge via interfacial modification with reduced graphene oxide/titanium dioxide nanocomposite and polydimethylsiloxane for oily wastewater treatment

doi: 10.1016/j.wse.2023.09.003

This work was supported by the Universiti Brunei Darussalam Research Funding (Grant No.UBD/OAVCRI/CRGWG (022)/171001).

  • Received Date: 2023-03-20
  • Accepted Date: 2023-08-29
  • Available Online: 2024-05-14
  • Three-dimensional (3D) porous absorbents have attracted significant attention in the oily wastewater treatment technology due to their high porosity and elasticity. Given their amphiphilic surface, they have a propensity to simultaneously absorb water and oil, which restricts their range of applications. In this study, a reduced graphene oxide and titanium dioxide nanocomposite (rGO/TiO2) was used to fabricate an ultrahydrophobic melamine sponge (MS) through interfacial modification using a solution immersion technique. To further modify it, polydimethylsiloxane (PDMS) was grafted onto its surface to establish stronger covalent bonds with the composite. The water contact angle of the sponge (rGO/TiO2/PDMS/MS) was 164.2°, which satisfies the condition for ultrahydrophobicity. The evidence of its water repellency was demonstrated by the Cassie-Baxter theory and the lotus leaf effect. As a result of the increased density of rGO/TiO2/PDMS/MS, it recorded an initial capacity that was 2 g/g lower than the raw MS for crude oil absorption. The raw MS retained 53 % of its initial absorption capacity after 20 cycles of absorption, while rGO/TiO2/PDMS/MS retained 97 %, suggesting good recyclability. Excellent oil and organic solvent recovery (90 %-96 %) was demonstrated by rGO/TiO2/PDMS/MS in oil-water combinations. In a continuous separation system, it achieved a remarkable separation efficiency of 2.4×106 L/(m3·h), and in turbulent emulsion separation, it achieved a demulsification efficiency of 90 %-91 %. This study provides a practical substitute for massive oil spill cleaning.


  • loading
  • Adofo, Y.K., Nyankson, E., Agyei-Tuffour, B., 2022. Dispersants as an oil spill clean-up technique in the marine environment:A review. Heliyon 8(8), e10153. https://doi.org/10.1016/j.heliyon.2022.e10153.
    Al-Sayegh, A., Al-Wahaibi, Y., Joshi, S., Al-Bahry, S., Elshafie, A., Al-Bemani, A., 2016. Bioremediation of heavy crude oil contamination. Open Biotechnol. J. 10, 301-311. https://doi.org/10.2174/1874070701610010301.
    Britannica, 2021. Oil spill. In:Encyclopedia Britannica. The Britannica Group, Chicago.
    Chen, C., Zhu, X., Chen, B., 2019. Durable superhydrophobic/superoleophilic graphene-based foam for high-efficiency oil spill cleanups and recovery. Environ. Sci. Technol. 53(3), 1509-1517. https://doi.org/10.1021/acs.est.8b04642.
    Chen, J., You, H., Xu, L., Li, T., Jiang, X., Li, C.M., 2017. Facile synthesis of a two-tier hierarchical structured superhydrophobic-superoleophilic melamine sponge for rapid and efficient oil/water separation. Journal of Colloid Interface Science 506, 659-668. https://doi.org/10.1016/j.jcis.2017.07.066.
    Cho, E.C., Chang-Jian, C.W., Hsiao, Y.S., Lee, K.C., Huang, J.H., 2016. Interfacial engineering of melamine sponges using hydrophobic TiO2 nanoparticles for effective oil/water separation. J. Taiwan Inst. Chem. Eng. 67, 476-483. https://doi.org/10.1016/j.jtice.2016.08.002.
    Deng, C.H., Gong, J.L., Zhang, P., Zeng, G.M., Song, B., Liu, H.Y., 2017. Preparation of melamine sponge decorated with silver nanoparticles-modified graphene for water disinfection. Journal of Colloid Interface Science 488, 26-38. https://doi.org/10.1016/j.jcis.2016.10.078.
    Dong, H., Zhan, Y., Sun, A., Chen, Y., Chen, X., 2023. Magnetically responsive and durable super-hydrophobic melamine sponge material. Colloids and Surfaces A:Physicochemical and Engineering Aspects 662, 130933. https://doi.org/10.1016/j.colsurfa.2023.130933.
    Duong, H.T.T., Burford, R.P., 2006. Effect of foam density, oil viscosity, and temperature on oil sorption behavior of polyurethane. J. Appl. Polym. Sci. 99(1), 360-367. https://doi.org/10.1002/app.22426.
    Faksness, L.-G., Leirvik, F., Taban, I.C., Engen, F., Jensen, H.V., Holbu, J.W., Dolva, H., Bratveit, M., 2022. Offshore field experiments with in-situ burning of oil:Emissions and burn efficiency. Environ. Res. 205, 112419. https://doi.org/10.1016/j.envres.2021.112419.
    He, R., Liu, S., Wang, R., Fu, T., Zhang, R., Zhang, Q., Zhou, Y., 2022. In situ modification of melamine sponge by MgAl-LDH with super-hydrophobicity and excellent harsh environment tolerance for high flux emulsion separation. Separation and Purification Technology 291, 120916. https://doi.org/10.1016/j.seppur.2022.120916.
    Hong, P., Liu, Z., Gao, Y., Chen, Y., Zhuang, M., Chen, L., Liu, X., Xiang, H., 2019. Fabricated of superhydrophobic silanized melamine sponge with photochromic properties for efficiency oil/water separation. Advances in Polymer Technology 2019, 9536320. https://doi.org/10.1155/2019/9536320.
    Manivel, R., Sivakumar, R., 2020. Boat type oil recovery skimmer. Mater. Today Proc. 21(1), 470-473. https://doi.org/10.1016/j.matpr.2019.06.632.
    Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M., 2010. Improved synthesis of graphene oxide. ACS Nano 4(8), 4806-4814. https://doi.org/10.1021/nn1006368.
    Merline, D.J., Vukusic, S., Abdala, A.A., 2013. Melamine formaldehyde:Curing studies and reaction mechanism. Polym. J. 45, 413-419. https://doi.org/10.1038/pj.2012.162.
    Mirhosseinian, N.S., Anbia, M., Salehi, S., 2020. Preparation and characterization of superhydrophobic melamine and melamine-derived carbon sponges modified with reduced graphene oxide-TiO2 nanocomposite as oil absorbent materials. J. Mater. Sci. 55, 1536-1552. https://doi.org/10.1007/s10853-019-04110-6.
    Murakami, D., Jinnai, H., Takahara, A., 2014. Wetting transition from the Cassie-Baxter state to the Wenzel state on textured polymer surfaces. Langmuir 30(8), 2061-2067. https://doi.org/10.1021/la4049067.
    Nyankson, E., Rodene, D., Gupta, R.B., 2016. Advancements in crude oil spill remediation research after the Deepwater Horizon oil spill. Water Air Soil Pollut. 227, 29. https://doi.org/10.1007/s11270-015-2727-5.
    Onyena, A.P., Sam, K., 2020. A review of the threat of oil exploitation to mangrove ecosystem:Insights from Niger Delta, Nigeria. Glob. Ecol. Conserv. 22, e00961. https://doi.org/10.1016/j.gecco.2020.e00961.
    Ouyang, Y., Song, L., Zhao, X., Li, Z., Liu, S., Yan, Z., 2023. 3D flexible superhydrophobic polyphosphazene coated melamine sponge for oil-water separation. Sep. Purif. Technol. 306, 122600. https://doi.org/10.1016/j.seppur.2022.122600.
    Patel, M., 2013. Design and efficiency comparison of various belt type oil skimmers. International Journal of Science and Research 4(1), 998-1002.
    Peng, Y., Dai, J., Liu, Y., Cao, L., Zhu, J., Liu, X., 2019. Bio-based polybenzoxazine modified melamine sponges for selective absorption of organic solvent in water. Adv. Sustain. Syst. 3(3), 1-10. https://doi.org/10.1002/adsu.201800126.
    Pham, V.H., Dickerson, J.H., 2014. Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials. ACS Appl. Mater. Interfaces 6(16), 14181-14188. https://doi.org/10.1021/am503503m.
    Qiu, L., Zhang, R., Zhang, Y., Li, C., Zhang, Q., Zhou, Y., 2018. Superhydrophobic, mechanically flexible and recyclable reduced graphene oxide wrapped sponge for highly efficient oil/water separation. Front. Chem. Sci. Eng. 12, 390-399. https://doi.org/10.1007/s11705-018-1751-6.
    Rajendran, S., Sadooni, F.N., Al-Kuwari, H.A.-S., Oleg, A., Govil, H., Nasir, S., Vethamony, P., 2021. Monitoring oil spill in Norilsk, Russia using satellite data. Sci. Rep. 11, 3817. https://doi.org/10.1038/s41598-021-83260-7.
    Safarpour, M., Khataee, A., Vatanpour, V., 2015. Effect of reduced graphene oxide/TiO2 nanocomposite with different molar ratios on the performance of PVDF ultrafiltration membranes. Sep. Purif. Technol. 140, 32-42. https://doi.org/10.1016/j.seppur.2014.11.010.
    Saha, P., Dashairya, L., 2018. Reduced graphene oxide modified melamine formaldehyde (rGO@MF) superhydrophobic sponge for efficient oil-water separation. Journal of Porous Materials 25, 1475-1488. https://doi.org/10.1007/s10934-018-0560-0.
    Stolz, A., le Floch, S., Reinert, L., Ramos, S.M.M., Tuaillon-Combes, J., Soneda, Y., Chaudet, P., Baillis, D., Blanchard, N., Duclaux, L., et al., 2016. Melamine-derived carbon sponges for oil-water separation. Carbon 107, 198-208. https://doi.org/10.1016/j.carbon.2016.05.059.
    Sun, Q., Xiang, B., Mu, P., Li, J., 2022. Green preparation of a carboxymethyl cellulose-coated membrane for highly efficient separation of crude oil-in-water emulsions. Langmuir 38(22), 7067-7076. https://doi.org/10.1021/acs.langmuir.2c00834.
    Tong, H., Chen, H., Zhao, Y., Liu, M., Cheng, Y., Lu, J., Tao, Y., Du, J., Wang, H., 2022. Robust PDMS-based porous sponge with enhanced recyclability for selective separation of oil-water mixture. Colloids Surfaces A:Physicochemical and Engineering Aspects 648, 129228. https://doi.org/10.1016/j.colsurfa.2022.129228.
    Ukhurebor, K.E., Athar, H., Adetunji, C.O., Aigbe, U.O., Onyancha, R.B., Abifarin, O., 2021. Environmental implications of petroleum spillages in the Niger Delta region of Nigeria:A review. J. Environ. Manage. 293, 112872. https://doi.org/10.1016/j.jenvman.2021.112872.
    Varjani, S., Joshi, R., Srivastava, V.K., Ngo, H.H., Guo, W., 2020. Treatment of wastewater from petroleum industry:Current practices and perspectives. Environmental Science and Pollution Research 27, 27172-27180. https://doi.org/10.1007/s11356-019-04725-x.
    Wang, S., Wen, Z., Shi, S., Hou, W., 2021. Preparation and oil absorption performance of polyacrylonitrile/reduced graphene oxide composite porous material. Journal of Water Process Engineering 41, 102092. https://doi.org/10.1016/j.jwpe.2021.102092.
    Wong, S.F., Lim, J.S., Dol, S.S., 2015. Crude oil emulsion:A review on formation, classification and stability of water-in-oil emulsions. Journal of Petroleum Science and Engineering 135, 498-504. https://doi.org/10.1016/j.petrol.2015.10.006.
    Xiang, B., Sun, Q., Zhong, Q., Mu, P., Li, J., 2022. Current research situation and future prospect of superwetting smart oil/water separation materials. Journal of Materials Chemistry A 10(38), 20190-20217. https://doi.org/10.1039/D2TA04469B.
    Xue, J., Zhu, L., Zhu, X., Li, H., Ma, C., Yu, S., Sun, D., Xia, F., Xue, Q., 2021. Tetradecylamine-MXene functionalized melamine sponge for effective oil/water separation and selective oil adsorption. Sep. Purif. Technol. 259, 118106. https://doi.org/10.1016/j.seppur.2020.118106.
    Yang, M., Yang, L., Chen, Z., Ding, Y., Li, M., Wu, Q., Liu, T., Liu, L., 2023. Superhydrophobic/superoleophilic modified melamine sponge for oil/water separation. Ceramics International 49(7), 11544-11551. https://doi.org/10.1016/j.ceramint.2022.12.001.
    Yang, S., Li, J., Zhen, C., Li, F., Sha, S., Hou, C., Lu, H., Wu, J., Sheng, Z., Ma, J., 2022. Graphene-based melamine sponges with reverse wettability for oil/water separation through absorption and filtration. J. Environ. Chem. Eng. 10, 107543. https://doi.org/10.1016/j.jece.2022.107543.
    Yu, L., Wang, L., Sun, X., Ye, D., 2018. Enhanced photocatalytic activity of rGO/TiO2 for the decomposition of formaldehyde under visible light irradiation. Journal of Environmental Sciences 73, 138-146. https://doi.org/10.1016/j.jes.2018.01.022.
    Zhang, Z., Liu, H., Qiao, W., 2020. Reduced graphene-based superhydrophobic sponges modified by hexadecyltrimethoxysilane for oil adsorption. Colloids and Surfaces A:Physicochemical Engineering Aspects 589, 124433. https://doi.org/10.1016/j.colsurfa.2020.124433.
    Zhou, J., Zhang, Y., Jia, G., Chen, Z., Yang, Y., Zhang, L., 2021. A multifunctional sponge incorporated with TiO2 and graphene oxide as a reusable absorbent for oil/water separation and dye absorption. New Journal of Chemistry 45(10), 4835-4842. https://doi.org/10.1039/D0NJ06298G.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (3) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint