Volume 17 Issue 3
Sep.  2024
Turn off MathJax
Article Contents
Xue-gao Chen, Zhong-bo Yu, Hui Lin, Tong-qing Shen, Peng Jiang. 2024: Hydrological responses to permafrost degradation on Tibetan Plateau under changing climate. Water Science and Engineering, 17(3): 209-216. doi: 10.1016/j.wse.2024.04.002
Citation: Xue-gao Chen, Zhong-bo Yu, Hui Lin, Tong-qing Shen, Peng Jiang. 2024: Hydrological responses to permafrost degradation on Tibetan Plateau under changing climate. Water Science and Engineering, 17(3): 209-216. doi: 10.1016/j.wse.2024.04.002

Hydrological responses to permafrost degradation on Tibetan Plateau under changing climate

doi: 10.1016/j.wse.2024.04.002
Funds:

This work was supported by the National Natural Science Foundation of China (Grants No. 42201015, U2240217, and U2340213), the Jiangsu Funding Program for Excellent Postdoctoral Talent (Grant No. 2022ZB173), and the Special Fund of the National Key Laboratory of Water Disaster Prevention (Grant No. 523024862).

  • Received Date: 2024-01-30
  • Accepted Date: 2024-04-09
  • Available Online: 2024-08-24
  • The Tibetan Plateau (TP) has undergone significant warming and humidification in recent years, resulting in rapid permafrost degradation and spatiotemporal variations in hydrological processes, such as subsurface water transport, hydrothermal conversion, and runoff generation. Understanding the mechanisms of hydrological processes in permafrost areas under changing climate is crucial for accurately evaluating hydrological responses on the TP. This study comprehensively discusses the permafrost hydrological processes of the TP under changing climate. Topics include climate conditions and permafrost states, subsurface water transport under freeze–thaw conditions, development of thermokarst lakes and hydrothermal processes, and runoff response during permafrost degradation. This study offers a comprehensive understanding of permafrost changes and their hydrological responses, contributing significantly to water security and sustainable development on the TP.

     

  • loading
  • Chen, X., Yu, Z., Huang, Q., Yi, P., Shi, X., Aldahan, A., Xiong, L., Wan, C., Chen, P., 2021. Evaluating the water level variation of a high-altitude lake in response to environmental changes on the southern Tibetan Plateau. J. Hydrol. Eng. 26(5), 05021010. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002050.
    Chen, X., Yu, Z., Yi, P., Aldahan, A., Hwang, H.-T., Sudicky, E.A., 2023. Disentangling runoff generation mechanisms: Combining isotope tracing with integrated surface/subsurface simulation. J. Hydrol. 617, 129149. https://doi.org/10.1016/j.jhydrol.2023.129149.
    Cheng, G., 1984. Problems on zonation of high-altitude permafrost. Acta Geograph. Sin. 39(2), 185-193 (in Chinese).
    Cheng, G., Jin, H., 2013. Permafrost and groundwater on the Qinghai-Tibet plateau and in northeast China. Hydrogeol. J. 21, 5-23. https://doi.org/10.1007/s10040-012-0927-2.
    Cheng, W.M., Zhao, S.M., Zhou, C.H. Chen, X., 2012. Simulation of the decadal permafrost distribution on the Qinghai-Tibet Plateau (China) over the past 50 years. Permafr. Periglac. Process. 23(4), 292-300. https://doi.org/10.1002/ppp.1758.
    Dong, Q., Luo, S., Wen, X., Wang, J., Li, W., 2022. Changes of precipitation and its effects on soil temperature and freeze-thaw process in southeastern Xizang in recent 60 years. Plateau Meteorol. 41(2), 404-419 (in Chinese). https://doi.org/10.7522/j.issn.1000-0534.2021.00065.
    Fang, X., Luo, S., Lyu, S., 2019. Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960-2014. Theor. Appl. Climatol. 135, 169-181. https://doi.org/10.1007/s00704-017-2337-9.
    Gao, T., Zhang, T., Cao, L., Kang, S., Sillanpaa, M., 2016. Reduced winter runoff in a mountainous permafrost region in the northern Tibetan Plateau. Cold Reg. Sci. Technol. 126, 36-43. https://doi.org/10.1016/j.coldregions.2016.03.007.
    Gu, H., Xu, Y., Liu, L., Xie, J., Wang, L., Pan, S., Guo, Y., 2023. Seasonal catchment memory of high mountain rivers in the Tibetan Plateau. Nat. Commun. 14(1), 3173-3173. https://doi.org/10.1038/s41467-023-38966-9.
    Huang, J., Zhou, X., Wu, G., Xu, X., Zhao, Q., Liu, Y., Duan, A., Xie, Y., Ma, Y., Zhao, P., et al., 2023. Global climate impacts of land-surface and atmospheric processes over the Tibetan Plateau. Rev. Geophys. 61(3), e2022RG000771. https://doi.org/10.1029/2022RG000771.
    Jiao, S., Wang, L., Liu, G., 2016. Prediction of Tibetan Plateau permafrost distribution in global warming. Acta Sci. Nauralium Univ. Pekin. 52(2), 249-256.
    Kneisel, C., Hauck, C., Fortier, R., Moorman, B., 2008. Advances in geophysical methods for permafrost investigations. Permafr. Periglac. Process. 19(2), 157-178. https://doi.org/10.1002/ppp.616.
    Levavasseur, G., Vrac, M., Roche, D., Paillard, D., Martin, A., Vandenberghe, J., 2011. Present and LGM permafrost from climate simulations: Contribution of statistical downscaling. Clim. Past 7(4), 1225-1246. https://doi.org/10.5194/cp-7-1225-2011.
    Li, X., Wu, T., Zhu, X., Jiang, Y., Ying, X, 2020. Improving the Noah-MP model for simulating hydrothermal regime of the active layer in the permafrost regions of the Qinghai-Tibet Plateau. J. Geophys. Res. Atmos. 125(16), e2020JD032588. https://doi.org/10.1029/2020JD032588.
    Li, Y., Wang, T., Yang, D., Tang, L., Yang, K., Liu, Z., 2021. Linkage between anomalies of pre-summer thawing of frozen soil over the Tibetan Plateau and summer precipitation in East Asia. Environ. Res. Lett. 16, 114030. https://doi.org/10.1088/1748-9326/ac2f1c.
    Lu, Q., Zhao, D., Wu, S., 2017. Simulated responses of permafrost distribution to climate change on the Qinghai-Tibet Plateau. Sci. Rep. 7, 3845. https://doi.org/10.1038/s41598-017-04140-7.
    Luo, S., Fang, X., Lyu, S., Ma, D., Chang, Y., Song, M., Chen, H., 2016. Frozen ground temperature trends associated with climate change in the Tibetan Plateau Three River Source Region from 1980 to 2014. Clim. Res. 67(3), 241-255. https://doi.org/10.3354/cr01371.
    Ma, Q., Jin, H., Bense, V., Luo, D., Marchenko, S., Harris, S., Lan, Y., 2019. Impacts of degrading permafrost on streamflow in the source area of Yellow River on the Qinghai-Tibet plateau, China. Adv. Clim. Chang. Res. 10(4), 225-239. https://doi.org/10.1016/j.accre.2020.02.001.
    Nan, Z., Li, S., Liu, Y., 2002. Mean annual ground temperature distribution on the Tibetan Plateau: Permafrost distribution mapping and further application. J. Glaciol. Geocryol. 24(2), 142-148.
    Niu, F., Luo, J., Lin, Z., Liu, M., Yin, G., 2014. Morphological characteristics of thermokarst lakes along the Qinghai-Tibet engineering corridor. Arctic Antarct. Alpine Res. 46(4), 963-974. https://doi.org/10.1657/1938-4246-46.4.963.
    Pan, X., You, Y., Roth, K., Guo, L., Wang, X., Yu, Q., 2014. Short communication mapping permafrost features that influence the hydrological processes of a thermokarst lake on the Qinghai-Tibet plateau, China. Permafr. Periglac. Process. 25(1), 60-68. https://doi.org/10.1002/ppp.1797.
    Pan, X., Yu, Q., You, Y., Chun, K., Shi, X., Li, Y., 2017. Contribution of supra-permafrost discharge to thermokarst lake water balances on the northeastern Qinghai-Tibet Plateau. J. Hydrol. 555, 621-630. https://doi.org/10.1016/j.jhydrol.2017.10.046.
    Park, H., Kim, Y., Kimball, J., 2016. Widespread permafrost vulnerability and soil active layer increases over the high northern latitudes inferred from satellite remote sensing and process model assessments. Remote Sens. Environ. 175, 349-358. https://doi.org/10.1016/j.rse.2015.12.046.
    Qin, Y., Lei, H., Yang, D., Gao, B., Wang, Y., Cong, Z., Fan, W., 2016. Long-term change in the depth of seasonally frozen ground and its ecohydrological impacts in the Qilian mountains, northeastern Tibetan Plateau. J. Hydrol. 542, 204-221. https://doi.org/10.1016/j.jhydrol.2016.09.008.
    Ran, Y., Li, X., Cheng, G., Zhang, T., Wu, Q., Jin, H., Jin, R., 2012. Distribution of permafrost in China: An overview of existing permafrost maps. Permafr. Periglac. Process. 23(3), 322-333. https://doi.org/10.1002/ppp.1756.
    Romanovsky, V., Drozdov, D., Oberman, N., Malkova, G., Kholodov, A., Marchenko, S., Moskalenko, N., Sergeev, D., Ukraintseva, N., Abramov, A., et al., 2010a. Thermal state of permafrost in Russia. Permafr. Periglac. Process. 21(2), 136-155. https://doi.org/10.1002/ppp.683.
    Romanovsky, V., Smith, S., Christiansen, H., 2010b. Permafrost thermal state in the polar northern hemisphere during the international polar year 2007-2009: A synthesis. Permafr. Periglac. Process. 21(2), 106-116. https://doi.org/10.1002/ppp.689.
    Shen, T., Jiang, P., Ju, Q., Yu, Z., Chen, X., Lin, H., Zhang, Y., 2023. Changes in permafrost spatial distribution and active layer thickness from 1980 to 2020 on the Tibet Plateau. Sci. Total Environ. 859(2), 160381. https://doi.org/10.1016/j.scitotenv.2022.160381.
    Shen, T., Jiang, P., Ju, Q., Zhao, J., Chen, X., Lin, H., Yang, B., Tan, C., Zhang, Y., Fu, X., Yu, Z., 2024. Permafrost on the Tibetan Plateau is degrading: Historical and projected trends. J. Hydrol. 628, 130501. https://doi.org/10.1016/j.jhydrol.2023.130501.
    Shi, R., Yang, H., Yang, D., 2020. Spatiotemporal variations in frozen ground and their impacts on hydrological components in the source region of the Yangtze River. J. Hydrol. 590, 125237. https://doi.org/10.1016/j.jhydrol.2020.125237.
    Smith, S., Romanovsky, V., Lewkowicz, A., Burn, C., Allard, M., Clow, G., Yoshikawa, K., Throop, J., 2010. Thermal state of permafrost in north America: A contribution to the international polar year. Permafr. Periglac. Process. 21(2), 117-135. https://doi.org/10.1002/ppp.690.
    Song, C., Wang, G., Mao, T., Dai, J., Yang, D., 2020. Linkage between permafrost distribution and river runoff changes across the Arctic and the Tibetan Plateau. Sci. China Earth Sci. 63(2), 292-302. https://doi.org/10.1007/s11430-018-9383-6.
    Wang, H., Liu, H., Ni, W., 2017. Factors influencing thermokarst lake development in Beiluhe basin, the Qinghai-Tibet Plateau. Environ. Earth Sci. 76(24), 816. https://doi.org/10.1007/s12665-017-7143-2.
    Wang, T., Zhao, Y., Xu, C., Ciais, P., Liu, D., Yang, H., Piao, S., Yao, T., 2021a. Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets. Nat. Clim. Change 11, 219-225. https://doi.org/10.1038/s41558-020-00974-8.
    Wang, T., Yang, D., Yang, Y., Zheng, G., Jin, H., Li, X., Yao, T., Cheng, G., 2023. Unsustainable water supply from thawing permafrost on the Tibetan Plateau in a changing climate. Sci. Bull. 68(11), 1105-1108. https://doi.org/10.1016/j.scib.2023.04.037.
    Wang, X., Gao, B., 2022. Frozen soil change and its impact on hydrological processes in the Qinghai Lake basin, the Qinghai-Tibetan Plateau, China. J. Hydrol. Reg. Stud. 39, 100993. https://doi.org/10.1016/j.ejrh.2022.100993.
    Wang, X., Yi, S., Wu, Q., Yang, K., Ding, Y., 2016. The role of permafrost and soil water in distribution of alpine grassland and its NDVI dynamics on the Qinghai-Tibetan Plateau. Global Planet. Change 147, 40-53. https://doi.org/10.1016/j.gloplacha.2016.10.014.
    Wang, Y., Yang, H., Gao, B., Wang, T., Qin, Y., Yang, D., 2018. Frozen ground degradation may reduce future runoff in the headwaters of an inland river on the northeastern Tibetan Plateau. J. Hydrol. 564, 1153-1164. https://doi.org/10.1016/j.jhydrol.2018.07.078.
    Wang, Y., Lu, M., Zhao, H., Gao, Z., 2021b. Analysis on soil water infiltration characteristics and mechanism in active layer in permafrost area of the Qinghai-Tibet Plateau. J. Glaciol. Geocryol. 43(5), 1301-1311 (in Chinese). https://doi.org/10.7522/j.issn.1000-0240.2021.0084.
    Wang, Y., Xie, X., Shi, J., Zhu, B., 2021c. Ensemble runoff modeling driven by multi-source precipitation products over the Tibetan Plateau. Chin. Sci. Bull. 66(32), 4169-4186 (in Chinese). https://doi.org/10.1360/TB-2020-1557.
    Wei, C., Yu, S., Wu, J., Chou, Y., Peng, E., Leonid G., 2021. Soil hydrological process and migration mode influenced by the freeze-thaw process in the activity layer of permafrost regions in Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 184, 103236. https://doi.org/10.1016/j.coldregions.2021.103236.
    Wu, Q., Hou, Y., Yun, H., Liu, Y., 2015. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China. Global Planet. Change 124, 149-155. https://doi.org/10.1016/j.gloplacha.2014.09.002.
    Wu, X., Zhang, X., Xiang, X., Zhang, K., Jin, H., Chen, X., Wang, C., Shao, Q., Hua, W., 2018. Changing runoff generation in the source area of the yellow river: Mechanisms, seasonal patterns and trends. Cold Reg. Sci. Technol. 155, 58-68. https://doi.org/10.1016/j.coldregions.2018.06.014.
    Xu, S., Yu, Z., Yang, C., Ji, X., Zhang, K., 2018. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin. Agric. For. Meteorol. 263, 118-129. https://doi.org/10.1016/j.agrformet.2018.08.010.
    Xu, S., Yu, Z., Lettenmaier, D., McVicar, T., Ji, X., 2020. Elevation-dependent response of vegetation dynamics to climate change in a cold mountainous region. Environ. Res. Lett. 15(9), 094005. https://doi.org/10.1088/1748-9326/ab9466.
    Yang, K., Wu, H., Qin, J., Lin, C., Tang, W., Chen, Y., 2014. Recent climate changes over the Tibetan plateau and their impacts on energy and water cycle: A review. Global Planet. Change 112, 79-91. https://doi.org/10.1016/j.gloplacha.2013.12.001.
    Yang, Y., Wu, Q., Hou, Y., Zhang, P., Yun, H., Jin, H., Xu, X., Jiang, G., 2019. Using stable isotopes to illuminate thermokarst lake hydrology in permafrost regions on the Qinghai-Tibet Plateau, China. Permafr. Periglac. Process. 30(1), 58-71. https://doi.org/10.1002/ppp.1996.
    Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H., Xu, B., et al., 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change 2, 663-667. https://doi.org/10.1038/nclimate1580.
    Yao, T., Wu, F., Ding, L., Sun, J., Zhu, L., Piao, S., Deng, T., Ni, X., Zheng, H., Ouyang, H., 2015. Multispherical interactions and their effects on the Tibetan plateau's earth system: A review of the recent researches. Natl. Sci. Rev. 2(4), 468-488. https://doi.org/10.1093/nsr/nwv070.
    Yao, T., Bolch, T., Chen, D., Gao, J., Immerzeel, W., Piao, S., Su, F., Thompson, L., Wada, Y., Wang, L., et al., 2022. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. 3, 618-632. https://doi.org/10.1038/s43017-022-00299-4.
    You, Y., Yu, Q., Pan, X., Wang, X., Guo, L., Wu, Q., 2017. Thermal effects of lateral supra-permafrost water flow around a thermokarst lake on the Qinghai-Tibet Plateau. Hydrol. Process. 31(13), 2429-2437. https://doi.org/10.1002/hyp.11193.
    Yuan, F., Zhao, C., Jiang, Y., Ren, L., Shan, H., Zhang, L., Zhu, Y., Chen, T., Jiang, S., Yang, X., Shen, H., 2017. Evaluation on uncertainty sources in projecting hydrological changes over the Xijiang River basin in South China. J. Hydrol. 554, 434-450. https://doi.org/10.1016/j.jhydrol.2017.08.034.
    Zhao, L., Zou, D., Hu, G., Wu, T., Du, E., Liu, G., Xiao, Y., Li, R., Pang, Q., Qiao, Y., Wu, X., Sun, Z., Xing, Z., Sheng, Y., Zhao, Y., Shi, J., Xie, C., Wang, L., Wang, C., Cheng, G., 2021. A synthesis dataset of permafrost thermal state for the Qinghai-Tibet (Xizang) Plateau, China, Earth Syst. Sci. Data 13, 4207-4218. https://doi.org/10.11888/Geocry.tpdc.271107.
  • 211-1.jpg
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (80) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return