Volume 18 Issue 1
Mar.  2025
Turn off MathJax
Article Contents
Chen-xue Jiang, Ying Li, Chi Yao, Jing Li, Ke Jing, Sui-sui Zhang, Cheng Liu, Lian-fang Zhao. 2025: Biodegradation of cresyl diphenyl phosphate in anaerobic activated sludge: Degradation characteristics, microbial community succession, and toxicity assessment. Water Science and Engineering, 18(1): 41-50. doi: 10.1016/j.wse.2024.05.002
Citation: Chen-xue Jiang, Ying Li, Chi Yao, Jing Li, Ke Jing, Sui-sui Zhang, Cheng Liu, Lian-fang Zhao. 2025: Biodegradation of cresyl diphenyl phosphate in anaerobic activated sludge: Degradation characteristics, microbial community succession, and toxicity assessment. Water Science and Engineering, 18(1): 41-50. doi: 10.1016/j.wse.2024.05.002

Biodegradation of cresyl diphenyl phosphate in anaerobic activated sludge: Degradation characteristics, microbial community succession, and toxicity assessment

doi: 10.1016/j.wse.2024.05.002
Funds:

This work was supported by the National Natural Science Foundation of China (Grants No. 52270155 and 92047201).

  • Received Date: 2023-12-12
  • Accepted Date: 2024-05-08
  • Available Online: 2025-03-05
  • Cresyl diphenyl phosphate (CDP), an emerging aryl organophosphate ester (OPE), exhibits potential toxic effects and is frequently found in diverse environmental media, thereby raising concerns about environmental pollution. Biodegradation demonstrates substantial potential for CDP removal from the environment. This study investigated the biodegradation mechanisms of CDP using anaerobic activated sludge (AnAS). The biodegradation of 1-mg/L CDP followed a first-order kinetic model with a degradation kinetic constant of 0.943 d-1, and the addition of different electron acceptors affected the degradation rate. High-resolution mass spectrometry identified seven transformation products (TPs) of CDP. The pathways of CDP degradation in anaerobic conditions were proposed, with carboxylation products being the most dominant intermediate products. The structure of the anaerobic microbial community at different degradation time points in CDP-amended microcosms was examined. The linear discriminant analysis (LDA) of effect size (LEfSe) potentially underscored the pivotal role of Methyloversatilis in CDP biodegradation. Zebrafish embryotoxicity experiments revealed both lethal and morphogenetic impacts of CDP on zebrafish embryos. The survival rate, hatching rate, and body length indicators of zebrafish embryos underscored the detoxification of CDP and its resultant intermediates by AnAS. This study offers new insights into the fate and biodegradation mechanisms of CDP in wastewater treatment plants.

     

  • loading
  • Bester, K., 2005. Comparison of TCPP concentrations in sludge and wastewater in a typical German WWTPs-comparison of sewage sludge from 20 plants. J. Environ. Manag. 7(5), 509-513, https://doi.org/10.1039/b502318a.
    Cai, T., Qian, L., Cai, S., Chen, L., 2010. Biodegradation of benazolin-ethyl by strain Methyloversatilis sp. cd-1 isolated from activated sludge. Curr. Microbiol. 62(2), 570-577, https://doi.org/10.1007/s00284-010-9746-7.
    Daraei, H., Rafiee, M., Yazdanbakhsh, A.R., Amoozegar, M.A., Guanglei, Q., 2019. A comparative study on the toxicity of nano zero valent iron (nZVI) on aerobic granular sludge and flocculent activated sludge: Reactor performance, microbial behavior, and mechanism of toxicity. Process Saf. Environ. Protect. 129, 238-248, https://doi.org/10.1016/j.psep.2019.07.011.
    Du, Z., Wang, G., Gao, S., Wang, Z., 2015. Aryl organophosphate flame retardants induced cardiotoxicity during zebrafish embryogenesis: By disturbing expression of the transcriptional regulators. Aquat. Toxicol. 161, 25-32, https://doi.org/10.1016/j.aquatox.2015.01.027.
    Feng, M., Zhou, J., Yu, X., Wang, H., Guo, Y., Mao, W., 2021. Bioremediation of triphenyl phosphate by Pycnoporus sanguineus: Metabolic pathway, proteomic mechanism and biotoxicity assessment. J. Hazard Mater. 417, 125983, https://doi.org/10.1016/j.jhazmat.2021.125983.
    Fichtner, T., Fischer, A. R., Dornack, C., 2019. Biodegradability of trimethylbenzene isomers under denitrifying and sulfate-reducing conditions. Int. J. Environ. Res. Publ. Health 16(4), 615, https://doi.org/10.3390/ijerph16040615.
    Fischer, K., Majewsky, M., 2014. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms. Appl. Microbiol. Biotechnol. 98(15), 6583-6597, https://doi.org/10.1007/s00253-014-5826-0.
    Gao, L., Shi, Y., Li, W., Liu, J., Cai, Y., 2016. Occurrence and distribution of organophosphate triesters and diesters in sludge from WWTPs of Beijing, China. Sci. Total Environ. 544, 143-149, https://doi.org/10.1016/j.scitotenv.2015.11.094.
    Guo, M., Wu, F., Hao, G., Qi, Q., Li, R., Li, N., Wei, L., Chai, T., 2017. Bacillus subtilis improves immunity and disease resistance in rabbits. Front. Immunol. 8, 354, https://doi.org/10.3389/fimmu.2017.00354.
    Hill, K.L., Hamers, T., Kamstra, J.H., Willmore, W.G., Letcher, R.J., 2018. Organophosphate triesters and selected metabolites enhance binding of thyroxine to human transthyretin in vitro. Toxicol. Lett. 285, 87-93, https://doi.org/10.1016/j.toxlet.2017.12.030.
    Hou, R., Wang, Y., Zhou, S., Zhou, L., Yuan, Y., Xu, Y., 2021. Aerobic degradation of nonhalogenated organophosphate flame esters (OPEs) by enriched cultures from sludge: Kinetics, pathways, bacterial community evolution, and toxicity evaluation. Sci. Total Environ. 760, 143385, https://doi.org/10.1016/j.scitotenv.2020.143385.
    Huang, C., Li, N., Yuan, S., Ji, X., Ma, M., Rao, K., Wang, Z., 2017. Aryl- and alkyl-phosphorus-containing flame retardants induced mitochondrial impairment and cell death in Chinese hamster ovary (CHO-k1) cells. Environ. Pollut. 230, 775-786, https://doi.org/10.1016/j.envpol.2017.07.024.
    Ji, X., Li, N., Ma, M., Rao, K., Wang, Z., 2020. In vitro estrogen-disrupting effects of organophosphate flame retardants. Sci. Total Environ. 727, 138484, https://doi.org/10.1016/j.scitotenv.2020.138484.
    Kong, Z., Li, L., Xue, Y., Yang, M., Li, Y.Y., 2019. Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater: A review. J. Clean. Prod. 231, 913-927, https://doi.org/10.1016/j.jclepro.2019.05.233.
    Lee, J.S., Kawai, Y.K., Morita, Y., Covaci, A., Kubota, A., 2022. Estrogenic and growth inhibitory responses to organophosphorus flame retardant metabolites in zebrafish embryos. Comp. Biochem. Physiol. C 256, 109321, https://doi.org/10.1016/j.cbpc.2022.109321.
    Li, J., Yu, N., Zhang, B., Jin, L., Li, M., Hu, M., Zhang, X., Wei, S., Yu, H., 2014. Occurrence of organophosphate flame retardants in drinking water from China. Water Res. 54, 53-61, https://doi.org/10.1016/j.watres.2014.01.031.
    Lin, X.Q., Li, Z.L., Liang, B., Zhai, H.L., Cai, W.W., Nan, J., Wang, A.J., 2019. Accelerated microbial reductive dechlorination of 2,4,6-trichlorophenol by weak electrical stimulation. Water Res. 162, 236-245, https://doi.org/10.1016/j.watres.2019.06.068.
    Liu, H., Chu, T., Chen, L., Gui, W., Zhu, G., 2017. In vivo cardiovascular toxicity induced by acetochlor in zebrafish larvae. Chemosphere 181, 600-608, https://doi.org/10.1016/j.chemosphere.2017.04.090.
    Liu, J., Zhang, X., Xu, J., Qiu, J., Zhu, J., Cao, H., He, J., 2020. Anaerobic biodegradation of acetochlor by acclimated sludge and its anaerobic catabolic pathway. Sci. Total Environ. 748, 141122, https://doi.org/10.1016/j.scitotenv.2020.141122.
    Liu, X., Lu, Q., Du, M, Xu, Q., Wang, D., 2022. Hormesis-like effects of tetrabromobisphenol A on anaerobic digestion: Responses of metabolic activity and microbial community. Environ. Sci. Technol. 56(16), 11277-11287, https://doi.org/10.1021/acs.est.2c00062.
    Liu, Y., Yin, H., Wei, K., Peng, H., Lu, G., Dang, Z., 2019. Biodegradation of tricresyl phosphate isomers by Brevibacillus brevis: Degradation pathway and metabolic mechanism. Chemosphere 232, 195-203, https://doi.org/10.1016/j.chemosphere.2019.05.188.
    Lorenzo, M., Campo, J., Pico, Y., 2016. Ultra-high-pressure liquid chromatography tandem mass spectrometry method for the determination of 9 organophosphate flame retardants in water samples. MethodsX 3, 343-349, https://doi.org/10.1016/j.mex.2016.04.006.
    Lu, Q., He, D., Liu, X., Du, M., Xu, Q., Wang, D., 2023. 1-butyl-3-methylimidazolium chloride affects anaerobic digestion through altering organics transformation, cell viability, and microbial community. Environ. Sci. Technol. 57(8), 3145-3155, https://doi.org/10.1021/acs.est.2c08004.
    Maes, J., Verlooy, L., Buenafe, O.E., de Witte, P.A.M., Esguerra, C.V., Crawford, A.D., 2012. Evaluation of 14 organic solvents and carriers for screening applications in zebrafish embryos and larvae. PLoS One 7(10), 43850, https://doi.org/10.1371/journal.pone.0043850.
    Mitchell, C.A., Reddam, A., Dasgupta, S., Zhang, S., Stapleton, H.M., Volz, D.C., 2019. Diphenyl phosphate-induced toxicity during embryonic development. Environ. Sci. Technol. 53(7), 3908-3916, https://doi.org/10.1021/acs.est.8b07238.
    Mu, J., Chen, Y., Song, Z., Liu, M., Zhu, B., Tao, H., Bao, M., Chen, Q., 2022. Effect of terminal electron acceptors on the anaerobic biodegradation of PAHs in marine sediments. J. Hazard Mater. 438, 129569, https://doi.org/10.1016/j.jhazmat.2022.129569.
    O'Brien, J.W., Thai, P.K., Brandsma, S.H., Leonards, P.E.G., Ort, C., Mueller, J.F., 2015. Wastewater analysis of Census day samples to investigate per capita input of organophosphorus flame retardants and plasticizers into wastewater. Chemosphere 138, 328-334, https://doi.org/10.1016/j.chemosphere.2015.06.014.
    Pang, L., Yang, P., Zhao, J., Zhang, H., 2016. Comparison of wastewater treatment processes on the removal efficiency of organophosphate esters. Water Sci. Technol. 74(7), 1602-1609, https://doi.org/10.2166/wst.2016.356.
    Pang, L., Ge, L., Yang P., He, H., Zhang, H., 2018. Degradation of organophosphate esters in sewage sludge: Effects of aerobic/anaerobic treatments and bacterial community compositions. Bioresour. Technol. 255, 16-21, https://doi.org/10.1016/j.biortech.2018.01.104.
    Pereyra-Camacho, M.A., Balderas-Hernandez, V.E., De Leon-Rodriguez, A., 2021. Biodegradation of diisononyl phthalate by a consortium of saline soil bacteria: Optimisation and kinetic characterisation. Appl. Microbiol. Biotechnol. 105, 3369-3380, https://doi.org/10.1007/s00253-021-11255-5.
    Safinowski, M., Meckenstock, R.U., 2006. Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Environ. Microbiol. 8(2), 347-352, https://doi.org/10.1111/j.1462-2920.2005.00900.x.
    Sahoo, N.K., Pakshirajan, K., Ghosh, P.K., 2010. Enhancing the biodegradation of 4-chlorophenol by Arthrobacter chlorophenolicus A6 via medium development. Int. Biodeterior. Biodegrad. 64(6), 474-480, https://doi.org/10.1016/j.ibiod.2010.05.008.
    Saini, A., Thaysen, C., Jantunen, L., McQueen, R.H., Diamond, M.L., 2016. From clothing to laundry water: Investigating the fate of phthalates, brominated flame retardants, and organophosphate esters. Environ. Sci. Technol. 50(17), 9289-9297, https://doi.org/10.1021/acs.est.6b02038.
    Shi, J.X., Han, H.J., Xu, C.Y., 2019. A novel enhanced anaerobic biodegradation method using biochar and Fe(OH)3@biochar for the removal of nitrogen heterocyclic compounds from coal gasification wastewater. Sci. Total Environ. 697, 134052, https://doi.org/10.1016/j.scitotenv.2019.134052.
    Smalley, N.E., Taipale, S., De Marco, P., Doronina, N.V., Kyrpides, N., Shapiro, N., Woyke, T., Kalyuzhnaya, M.G., 2015. Functional and genomic diversity of methylotrophic Rhodocyclaceae: Description of Methyloversatilis discipulorum sp. nov. Int. J. Syst. Evol. Micr. 65(7), 2227-2233, https://doi.org/10.1099/ijs.0.000190.
    Srisowmeya, G., Chakravarthy, M., Nandhini Devi, G., 2020. Critical considerations in two-stage anaerobic digestion of food waste - a review. Renew. Sustain. Energy Rev. 119, 109587, https://doi.org/10.1016/j.rser.2019.109587.
    Su, G., Crump, D., Letcher, R. J., Kennedy, S.W., 2014. Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes. Environ. Sci. Technol. 48(22), 13511-13519, https://doi.org/10.1021/es5039547.
    Sun, L., Wan, S., Yu, Z., Wang, Y., Wang, S., 2012. Anaerobic biological treatment of high strength cassava starch wastewater in a new type up-flow multistage anaerobic reactor. Bioresour. Technol. 104, 280-288, https://doi.org/10.1016/j.biortech.2011.11.070.
    Tan, H., Chen, D., Peng, C., Liu, X., Wu, Y., Li, X., Du, R., Wang, B., Guo, Y., Zeng, E.Y., 2018. Novel and traditional organophosphate esters in house dust from south China: Association with hand wipes and exposure estimation. Environ. Sci. Technol. 52(19), 11017-11026, https://doi.org/10.1021/acs.est.8b02933.
    van der Veen, I., de Boer, J., 2012. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere 88(10), 1119-1153, https://doi.org/10.1016/j.chemosphere.2012.03.067.
    Varjani, S.J., Upasani, V.N., 2017. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int. Biodeterior. Biodegrad. 120, 71-83, https://doi.org/10.1016/j.ibiod.2017.02.006.
    Wang, L., Wang, L., Zhan, X., Huang, Y., Wang, J., Wang, X., 2020. Response mechanism of microbial community to the environmental stress caused by the different mercury concentration in soils. Ecotoxicol. Environ. Saf. 188, 109906, https://doi.org/10.1016/j.ecoenv.2019.109906.
    Wang, S., Qian, J., Zhang, B., Chen, L., Wei, S., Pan, B., 2023. Unveiling the occurrence and potential ecological risks of organophosphate esters in municipal WWTPs across China. Environ. Sci. Technol. 57, 1907-1918, https://doi.org/10.1021/acs.est.2c06077.
    Wang, Y., Kannan, P., Halden, R.U., Kannan, K., 2019a. A nationwide survey of 31 organophosphate esters in sewage sludge from the United States. Sci. Total Environ. 655, 446-453, https://doi.org/10.1016/j.scitotenv.2018.11.224.
    Wang, Y., Yao, Y., Li, W., Zhu, H., Wang, L., Sun, H., Kannan, K., 2019b. A nationwide survey of 19 organophosphate esters in soils from China: Spatial distribution and hazard assessment. Sci. Total Environ. 671, 528-535, https://doi.org/10.1016/j.scitotenv.2019.03.335.
    Yang, K., Zhao, Y., Ji, M., Li, Z., Zhai, S., Zhou, X., Wang, Q., Wang, C., Liang, B., 2021a. Challenges and opportunities for the biodegradation of chlorophenols: Aerobic, anaerobic and bioelectrochemical processes. Water Res. 193, 116862, https://doi.org/10.1016/j.watres.2021.116862.
    Yang, X., Fan, D., Gu, W., Liu, J., Shi, L., Zhang, Z., Zhou, L., Ji, G., 2021b. Aerobic and anaerobic biodegradability of organophosphates in activated sludge derived from kitchen garbage biomass and agricultural residues. Front. Bioeng. Biotechnol. 9, 649049, https://doi.org/10.3389/fbioe.2021.649049.
    Yang, X., Sun, Z., Wang, W., Zhou, Q., Shi, G., Wei, F., Jiang, G., 2018. Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebrafish. Sci. Total Environ. 643, 559-568, https://doi.org/10.1016/j.scitotenv.2018.06.213.
    Yang, Y., Yin, H., Peng, H., Lu, G., Dang, Z., 2020. Biodegradation of triphenyl phosphate using an efficient bacterial consortium GYY: Degradation characteristics, metabolic pathway and 16S rRNA genes analysis. Sci. Total Environ. 713, 136598, https://doi.org/10.1016/j.scitotenv.2020.136598.
    Yao, C., Li, Y., Jiang, C., Li, J., Jing, K., Zhang, S., Yang, H., Liu, C., Zhao, L., 2023. Triisobutyl phosphate biodegradation by enriched activated sludge consortia: Degradation mechanism and bioaugmentation potential. Environ. Pollut. 322, 121027, https://doi.org/10.1016/j.envpol.2023.121027.
    Zhang, H., Quan, H., Yin, S., Sun, L., Lu, H., 2022. Unraveling the toxicity associated with ciprofloxacin biodegradation in biological wastewater treatment. Environ. Sci. Technol. 56(22), 15941-15952, https://doi.org/10.1021/acs.est.2c04387.
    Zhang, J., Zhang, Y., Quan, X., Liu, Y., An, X., Chen, S., Zhao, H., 2011. Bioaugmentation and functional partitioning in a zero valent iron-anaerobic reactor for sulfate-containing wastewater treatment. Chem. Eng. J. 174(1), 159-165, https://doi.org/10.1016/j.cej.2011.08.069.
    Zhang, J., Yan, J.N., Guo, Y.N., Wu, Z.Y., Ren, Y., 2016. Anaerobic and aerobic biodegradation of flame retardant tetrabromobisphenol A. Environ. Chem. 35(9), 1776-1784, https://doi.org/10.7524/j.issn.0254-6108.2016.09.2016013001.
    Zhang, Z., Guo, H., Sun, J., Wang, H., 2020. Investigation of anaerobic phenanthrene biodegradation by a highly enriched co-culture, PheN9, with nitrate as an electron acceptor. J. Hazard Mater. 383, 121191, https://doi.org/10.1016/j.jhazmat.2019.121191.
    Zhao, J., Li, Y., Chen, X., Li, Y., 2018. Effects of carbon sources on sludge performance and microbial community for 4-chlorophenol wastewater treatment in sequencing batch reactors. Bioresour. Technol. 255, 22-28, https://doi.org/10.1016/j.biortech.2018.01.106.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (19) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return