Citation: | Chen-xue Jiang, Ying Li, Chi Yao, Jing Li, Ke Jing, Sui-sui Zhang, Cheng Liu, Lian-fang Zhao. 2025: Biodegradation of cresyl diphenyl phosphate in anaerobic activated sludge: Degradation characteristics, microbial community succession, and toxicity assessment. Water Science and Engineering, 18(1): 41-50. doi: 10.1016/j.wse.2024.05.002 |
Bester, K., 2005. Comparison of TCPP concentrations in sludge and wastewater in a typical German WWTPs-comparison of sewage sludge from 20 plants. J. Environ. Manag. 7(5), 509-513, https://doi.org/10.1039/b502318a.
|
Cai, T., Qian, L., Cai, S., Chen, L., 2010. Biodegradation of benazolin-ethyl by strain Methyloversatilis sp. cd-1 isolated from activated sludge. Curr. Microbiol. 62(2), 570-577, https://doi.org/10.1007/s00284-010-9746-7.
|
Daraei, H., Rafiee, M., Yazdanbakhsh, A.R., Amoozegar, M.A., Guanglei, Q., 2019. A comparative study on the toxicity of nano zero valent iron (nZVI) on aerobic granular sludge and flocculent activated sludge: Reactor performance, microbial behavior, and mechanism of toxicity. Process Saf. Environ. Protect. 129, 238-248, https://doi.org/10.1016/j.psep.2019.07.011.
|
Du, Z., Wang, G., Gao, S., Wang, Z., 2015. Aryl organophosphate flame retardants induced cardiotoxicity during zebrafish embryogenesis: By disturbing expression of the transcriptional regulators. Aquat. Toxicol. 161, 25-32, https://doi.org/10.1016/j.aquatox.2015.01.027.
|
Feng, M., Zhou, J., Yu, X., Wang, H., Guo, Y., Mao, W., 2021. Bioremediation of triphenyl phosphate by Pycnoporus sanguineus: Metabolic pathway, proteomic mechanism and biotoxicity assessment. J. Hazard Mater. 417, 125983, https://doi.org/10.1016/j.jhazmat.2021.125983.
|
Fichtner, T., Fischer, A. R., Dornack, C., 2019. Biodegradability of trimethylbenzene isomers under denitrifying and sulfate-reducing conditions. Int. J. Environ. Res. Publ. Health 16(4), 615, https://doi.org/10.3390/ijerph16040615.
|
Fischer, K., Majewsky, M., 2014. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms. Appl. Microbiol. Biotechnol. 98(15), 6583-6597, https://doi.org/10.1007/s00253-014-5826-0.
|
Gao, L., Shi, Y., Li, W., Liu, J., Cai, Y., 2016. Occurrence and distribution of organophosphate triesters and diesters in sludge from WWTPs of Beijing, China. Sci. Total Environ. 544, 143-149, https://doi.org/10.1016/j.scitotenv.2015.11.094.
|
Guo, M., Wu, F., Hao, G., Qi, Q., Li, R., Li, N., Wei, L., Chai, T., 2017. Bacillus subtilis improves immunity and disease resistance in rabbits. Front. Immunol. 8, 354, https://doi.org/10.3389/fimmu.2017.00354.
|
Hill, K.L., Hamers, T., Kamstra, J.H., Willmore, W.G., Letcher, R.J., 2018. Organophosphate triesters and selected metabolites enhance binding of thyroxine to human transthyretin in vitro. Toxicol. Lett. 285, 87-93, https://doi.org/10.1016/j.toxlet.2017.12.030.
|
Hou, R., Wang, Y., Zhou, S., Zhou, L., Yuan, Y., Xu, Y., 2021. Aerobic degradation of nonhalogenated organophosphate flame esters (OPEs) by enriched cultures from sludge: Kinetics, pathways, bacterial community evolution, and toxicity evaluation. Sci. Total Environ. 760, 143385, https://doi.org/10.1016/j.scitotenv.2020.143385.
|
Huang, C., Li, N., Yuan, S., Ji, X., Ma, M., Rao, K., Wang, Z., 2017. Aryl- and alkyl-phosphorus-containing flame retardants induced mitochondrial impairment and cell death in Chinese hamster ovary (CHO-k1) cells. Environ. Pollut. 230, 775-786, https://doi.org/10.1016/j.envpol.2017.07.024.
|
Ji, X., Li, N., Ma, M., Rao, K., Wang, Z., 2020. In vitro estrogen-disrupting effects of organophosphate flame retardants. Sci. Total Environ. 727, 138484, https://doi.org/10.1016/j.scitotenv.2020.138484.
|
Kong, Z., Li, L., Xue, Y., Yang, M., Li, Y.Y., 2019. Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater: A review. J. Clean. Prod. 231, 913-927, https://doi.org/10.1016/j.jclepro.2019.05.233.
|
Lee, J.S., Kawai, Y.K., Morita, Y., Covaci, A., Kubota, A., 2022. Estrogenic and growth inhibitory responses to organophosphorus flame retardant metabolites in zebrafish embryos. Comp. Biochem. Physiol. C 256, 109321, https://doi.org/10.1016/j.cbpc.2022.109321.
|
Li, J., Yu, N., Zhang, B., Jin, L., Li, M., Hu, M., Zhang, X., Wei, S., Yu, H., 2014. Occurrence of organophosphate flame retardants in drinking water from China. Water Res. 54, 53-61, https://doi.org/10.1016/j.watres.2014.01.031.
|
Lin, X.Q., Li, Z.L., Liang, B., Zhai, H.L., Cai, W.W., Nan, J., Wang, A.J., 2019. Accelerated microbial reductive dechlorination of 2,4,6-trichlorophenol by weak electrical stimulation. Water Res. 162, 236-245, https://doi.org/10.1016/j.watres.2019.06.068.
|
Liu, H., Chu, T., Chen, L., Gui, W., Zhu, G., 2017. In vivo cardiovascular toxicity induced by acetochlor in zebrafish larvae. Chemosphere 181, 600-608, https://doi.org/10.1016/j.chemosphere.2017.04.090.
|
Liu, J., Zhang, X., Xu, J., Qiu, J., Zhu, J., Cao, H., He, J., 2020. Anaerobic biodegradation of acetochlor by acclimated sludge and its anaerobic catabolic pathway. Sci. Total Environ. 748, 141122, https://doi.org/10.1016/j.scitotenv.2020.141122.
|
Liu, X., Lu, Q., Du, M, Xu, Q., Wang, D., 2022. Hormesis-like effects of tetrabromobisphenol A on anaerobic digestion: Responses of metabolic activity and microbial community. Environ. Sci. Technol. 56(16), 11277-11287, https://doi.org/10.1021/acs.est.2c00062.
|
Liu, Y., Yin, H., Wei, K., Peng, H., Lu, G., Dang, Z., 2019. Biodegradation of tricresyl phosphate isomers by Brevibacillus brevis: Degradation pathway and metabolic mechanism. Chemosphere 232, 195-203, https://doi.org/10.1016/j.chemosphere.2019.05.188.
|
Lorenzo, M., Campo, J., Pico, Y., 2016. Ultra-high-pressure liquid chromatography tandem mass spectrometry method for the determination of 9 organophosphate flame retardants in water samples. MethodsX 3, 343-349, https://doi.org/10.1016/j.mex.2016.04.006.
|
Lu, Q., He, D., Liu, X., Du, M., Xu, Q., Wang, D., 2023. 1-butyl-3-methylimidazolium chloride affects anaerobic digestion through altering organics transformation, cell viability, and microbial community. Environ. Sci. Technol. 57(8), 3145-3155, https://doi.org/10.1021/acs.est.2c08004.
|
Maes, J., Verlooy, L., Buenafe, O.E., de Witte, P.A.M., Esguerra, C.V., Crawford, A.D., 2012. Evaluation of 14 organic solvents and carriers for screening applications in zebrafish embryos and larvae. PLoS One 7(10), 43850, https://doi.org/10.1371/journal.pone.0043850.
|
Mitchell, C.A., Reddam, A., Dasgupta, S., Zhang, S., Stapleton, H.M., Volz, D.C., 2019. Diphenyl phosphate-induced toxicity during embryonic development. Environ. Sci. Technol. 53(7), 3908-3916, https://doi.org/10.1021/acs.est.8b07238.
|
Mu, J., Chen, Y., Song, Z., Liu, M., Zhu, B., Tao, H., Bao, M., Chen, Q., 2022. Effect of terminal electron acceptors on the anaerobic biodegradation of PAHs in marine sediments. J. Hazard Mater. 438, 129569, https://doi.org/10.1016/j.jhazmat.2022.129569.
|
O'Brien, J.W., Thai, P.K., Brandsma, S.H., Leonards, P.E.G., Ort, C., Mueller, J.F., 2015. Wastewater analysis of Census day samples to investigate per capita input of organophosphorus flame retardants and plasticizers into wastewater. Chemosphere 138, 328-334, https://doi.org/10.1016/j.chemosphere.2015.06.014.
|
Pang, L., Yang, P., Zhao, J., Zhang, H., 2016. Comparison of wastewater treatment processes on the removal efficiency of organophosphate esters. Water Sci. Technol. 74(7), 1602-1609, https://doi.org/10.2166/wst.2016.356.
|
Pang, L., Ge, L., Yang P., He, H., Zhang, H., 2018. Degradation of organophosphate esters in sewage sludge: Effects of aerobic/anaerobic treatments and bacterial community compositions. Bioresour. Technol. 255, 16-21, https://doi.org/10.1016/j.biortech.2018.01.104.
|
Pereyra-Camacho, M.A., Balderas-Hernandez, V.E., De Leon-Rodriguez, A., 2021. Biodegradation of diisononyl phthalate by a consortium of saline soil bacteria: Optimisation and kinetic characterisation. Appl. Microbiol. Biotechnol. 105, 3369-3380, https://doi.org/10.1007/s00253-021-11255-5.
|
Safinowski, M., Meckenstock, R.U., 2006. Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Environ. Microbiol. 8(2), 347-352, https://doi.org/10.1111/j.1462-2920.2005.00900.x.
|
Sahoo, N.K., Pakshirajan, K., Ghosh, P.K., 2010. Enhancing the biodegradation of 4-chlorophenol by Arthrobacter chlorophenolicus A6 via medium development. Int. Biodeterior. Biodegrad. 64(6), 474-480, https://doi.org/10.1016/j.ibiod.2010.05.008.
|
Saini, A., Thaysen, C., Jantunen, L., McQueen, R.H., Diamond, M.L., 2016. From clothing to laundry water: Investigating the fate of phthalates, brominated flame retardants, and organophosphate esters. Environ. Sci. Technol. 50(17), 9289-9297, https://doi.org/10.1021/acs.est.6b02038.
|
Shi, J.X., Han, H.J., Xu, C.Y., 2019. A novel enhanced anaerobic biodegradation method using biochar and Fe(OH)3@biochar for the removal of nitrogen heterocyclic compounds from coal gasification wastewater. Sci. Total Environ. 697, 134052, https://doi.org/10.1016/j.scitotenv.2019.134052.
|
Smalley, N.E., Taipale, S., De Marco, P., Doronina, N.V., Kyrpides, N., Shapiro, N., Woyke, T., Kalyuzhnaya, M.G., 2015. Functional and genomic diversity of methylotrophic Rhodocyclaceae: Description of Methyloversatilis discipulorum sp. nov. Int. J. Syst. Evol. Micr. 65(7), 2227-2233, https://doi.org/10.1099/ijs.0.000190.
|
Srisowmeya, G., Chakravarthy, M., Nandhini Devi, G., 2020. Critical considerations in two-stage anaerobic digestion of food waste - a review. Renew. Sustain. Energy Rev. 119, 109587, https://doi.org/10.1016/j.rser.2019.109587.
|
Su, G., Crump, D., Letcher, R. J., Kennedy, S.W., 2014. Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes. Environ. Sci. Technol. 48(22), 13511-13519, https://doi.org/10.1021/es5039547.
|
Sun, L., Wan, S., Yu, Z., Wang, Y., Wang, S., 2012. Anaerobic biological treatment of high strength cassava starch wastewater in a new type up-flow multistage anaerobic reactor. Bioresour. Technol. 104, 280-288, https://doi.org/10.1016/j.biortech.2011.11.070.
|
Tan, H., Chen, D., Peng, C., Liu, X., Wu, Y., Li, X., Du, R., Wang, B., Guo, Y., Zeng, E.Y., 2018. Novel and traditional organophosphate esters in house dust from south China: Association with hand wipes and exposure estimation. Environ. Sci. Technol. 52(19), 11017-11026, https://doi.org/10.1021/acs.est.8b02933.
|
van der Veen, I., de Boer, J., 2012. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere 88(10), 1119-1153, https://doi.org/10.1016/j.chemosphere.2012.03.067.
|
Varjani, S.J., Upasani, V.N., 2017. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int. Biodeterior. Biodegrad. 120, 71-83, https://doi.org/10.1016/j.ibiod.2017.02.006.
|
Wang, L., Wang, L., Zhan, X., Huang, Y., Wang, J., Wang, X., 2020. Response mechanism of microbial community to the environmental stress caused by the different mercury concentration in soils. Ecotoxicol. Environ. Saf. 188, 109906, https://doi.org/10.1016/j.ecoenv.2019.109906.
|
Wang, S., Qian, J., Zhang, B., Chen, L., Wei, S., Pan, B., 2023. Unveiling the occurrence and potential ecological risks of organophosphate esters in municipal WWTPs across China. Environ. Sci. Technol. 57, 1907-1918, https://doi.org/10.1021/acs.est.2c06077.
|
Wang, Y., Kannan, P., Halden, R.U., Kannan, K., 2019a. A nationwide survey of 31 organophosphate esters in sewage sludge from the United States. Sci. Total Environ. 655, 446-453, https://doi.org/10.1016/j.scitotenv.2018.11.224.
|
Wang, Y., Yao, Y., Li, W., Zhu, H., Wang, L., Sun, H., Kannan, K., 2019b. A nationwide survey of 19 organophosphate esters in soils from China: Spatial distribution and hazard assessment. Sci. Total Environ. 671, 528-535, https://doi.org/10.1016/j.scitotenv.2019.03.335.
|
Yang, K., Zhao, Y., Ji, M., Li, Z., Zhai, S., Zhou, X., Wang, Q., Wang, C., Liang, B., 2021a. Challenges and opportunities for the biodegradation of chlorophenols: Aerobic, anaerobic and bioelectrochemical processes. Water Res. 193, 116862, https://doi.org/10.1016/j.watres.2021.116862.
|
Yang, X., Fan, D., Gu, W., Liu, J., Shi, L., Zhang, Z., Zhou, L., Ji, G., 2021b. Aerobic and anaerobic biodegradability of organophosphates in activated sludge derived from kitchen garbage biomass and agricultural residues. Front. Bioeng. Biotechnol. 9, 649049, https://doi.org/10.3389/fbioe.2021.649049.
|
Yang, X., Sun, Z., Wang, W., Zhou, Q., Shi, G., Wei, F., Jiang, G., 2018. Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebrafish. Sci. Total Environ. 643, 559-568, https://doi.org/10.1016/j.scitotenv.2018.06.213.
|
Yang, Y., Yin, H., Peng, H., Lu, G., Dang, Z., 2020. Biodegradation of triphenyl phosphate using an efficient bacterial consortium GYY: Degradation characteristics, metabolic pathway and 16S rRNA genes analysis. Sci. Total Environ. 713, 136598, https://doi.org/10.1016/j.scitotenv.2020.136598.
|
Yao, C., Li, Y., Jiang, C., Li, J., Jing, K., Zhang, S., Yang, H., Liu, C., Zhao, L., 2023. Triisobutyl phosphate biodegradation by enriched activated sludge consortia: Degradation mechanism and bioaugmentation potential. Environ. Pollut. 322, 121027, https://doi.org/10.1016/j.envpol.2023.121027.
|
Zhang, H., Quan, H., Yin, S., Sun, L., Lu, H., 2022. Unraveling the toxicity associated with ciprofloxacin biodegradation in biological wastewater treatment. Environ. Sci. Technol. 56(22), 15941-15952, https://doi.org/10.1021/acs.est.2c04387.
|
Zhang, J., Zhang, Y., Quan, X., Liu, Y., An, X., Chen, S., Zhao, H., 2011. Bioaugmentation and functional partitioning in a zero valent iron-anaerobic reactor for sulfate-containing wastewater treatment. Chem. Eng. J. 174(1), 159-165, https://doi.org/10.1016/j.cej.2011.08.069.
|
Zhang, J., Yan, J.N., Guo, Y.N., Wu, Z.Y., Ren, Y., 2016. Anaerobic and aerobic biodegradation of flame retardant tetrabromobisphenol A. Environ. Chem. 35(9), 1776-1784, https://doi.org/10.7524/j.issn.0254-6108.2016.09.2016013001.
|
Zhang, Z., Guo, H., Sun, J., Wang, H., 2020. Investigation of anaerobic phenanthrene biodegradation by a highly enriched co-culture, PheN9, with nitrate as an electron acceptor. J. Hazard Mater. 383, 121191, https://doi.org/10.1016/j.jhazmat.2019.121191.
|
Zhao, J., Li, Y., Chen, X., Li, Y., 2018. Effects of carbon sources on sludge performance and microbial community for 4-chlorophenol wastewater treatment in sequencing batch reactors. Bioresour. Technol. 255, 22-28, https://doi.org/10.1016/j.biortech.2018.01.106.
|