Volume 18 Issue 3
Sep.  2025
Turn off MathJax
Article Contents
Xun Wang, Huai-yu Cao, Jia-wen Gan, Tang Liu, Pei-fang Wang, Qiu-sheng Yuan, Xiao-lei Xing, Cheng-gong Du, Yu-ran Zheng, Yun-xin Liu. 2025: Abundant and rare subcommunity assemblages of prokaryotes and eukaryotes controlled by vertical environmental heterogeneity in an urban reservoir. Water Science and Engineering, 18(3): 312-323. doi: 10.1016/j.wse.2025.01.001
Citation: Xun Wang, Huai-yu Cao, Jia-wen Gan, Tang Liu, Pei-fang Wang, Qiu-sheng Yuan, Xiao-lei Xing, Cheng-gong Du, Yu-ran Zheng, Yun-xin Liu. 2025: Abundant and rare subcommunity assemblages of prokaryotes and eukaryotes controlled by vertical environmental heterogeneity in an urban reservoir. Water Science and Engineering, 18(3): 312-323. doi: 10.1016/j.wse.2025.01.001

Abundant and rare subcommunity assemblages of prokaryotes and eukaryotes controlled by vertical environmental heterogeneity in an urban reservoir

doi: 10.1016/j.wse.2025.01.001
  • Received Date: 2024-07-19
  • Accepted Date: 2024-12-27
  • Available Online: 2025-10-15
  • Reservoirs play a critical role in addressing water resources challenges. However, their vertical influence on the assembly mechanisms of different microbial communities, including prokaryotes and eukaryotes, remains unclear. This study examined the vertical diversity patterns of abundant and rare subcommunities of prokaryotes and eukaryotes in an urban reservoir, using water depth as a geographical gradient and employing high-throughput sequencing. The impact of vertical environmental heterogeneity on community structure was quantified, and key drivers of these dynamics were identified. The results indicated that the urban reservoir exhibited statistically significant differences in the vertical distribution of water temperature and oxidation/reduction potential. The a-diversity of the abundant subcommunity displayed an opposing vertical pattern compared to that of the rare subcommunity, while the b-diversity for both subcommunities of prokaryotes and eu-karyotes increased with water depth. Moreover, the distinct diversity patterns of abundant and rare subcommunities were associated with environmental heterogeneity and species adaptability. Notably, the b-diversity of the rare subcommunity of eukaryotes was primarily driven by species turnover in surface water, whereas nestedness became the dominant factor in deeper water. Furthermore, eukaryotic microbes exhibited a more pronounced response to changes in water depth than prokaryotes, consistent with the importance of heterogeneous selection to the eukaryotic community. Water temperature significantly affected the community composition of all groups, highlighting its importance in shaping community dynamics. This study provides valuable insights into the vertical distribution and assembly mechanisms of microbial communities in urban reservoirs, contributing to the protection and management of aquatic ecosystems under river regulation.

     

  • loading
  • [1]
    Arce-Peña, N.P., Arroyo-Rodríguez, V., Avila-Cabadilla, L.D., Moreno, C.E., Andresen, E., 2022. Homogenization of terrestrial mammals in fragmented rainforests: The loss of species turnover and its landscape drivers. Ecol. Appl. 32(1),-e02476. https://doi.org/10.1002/eap.2476.
    [2]
    Bahram, M., Kohout, P., Anslan, S., Harend, H., Abarenkov, K., Tedersoo, L., 2016. Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J. 10(4), 885-896. https://doi.org/10.1038/ismej.2015.164.
    [3]
    Bartosiewicz, M., Przytulska, A., Deshpande, B.N., Antoniades, D., Cortes, A., MacIntyre, S., Lehmann, M.F., Laurion, I., 2019. Effects of climate change and episodic heat events on cyanobacteria in a eutrophic polymictic lake. Sci. Total Environ. 693, 133414. https://doi.org/10.1016/j.scitotenv.2019.07.220.
    [4]
    Bevilacqua, S., Terlizzi, A., 2020. Nestedness and turnover unveil inverse spatial patterns of compositional and functional b-diversity at varying depth in marine benthos. Divers. Distrib. 26(6), 743-757. https://doi.org/10.1111/ddi.13025.
    [5]
    Burns, A.R., Stephens, W.Z., Stagaman, K., Wong, S., Rawls, J.F., Guillemin, K., Bohannan, B.J., 2016. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10(3), 655-664. https://doi.org/10.1038/ismej.2015.142.
    [6]
    Checon, H.H., Corte, G.N., Shah Esmaeili, Y.M.L., Amaral, A.C.Z., 2018. Nestedness patterns and the role of morphodynamics and spatial distance on sandy beach fauna: Ecological hypotheses and conservation strategies. Sci. Rep. 8, 3759. https://doi.org/10.1038/s41598-018-22158-3.
    [7]
    Chen, J., Wang, P., Wang, C., Wang, X., Miao, L., Liu, S., Yuan, Q., Sun, S., 2020. Distinct assembly mechanisms underlie similar biogeographic patterns of rare and abundant bacterioplankton in cascade reservoirs of a large river. Front. Microbiol. 11, 158. https://doi.org/10.3389/fmicb.2020.00158.
    [8]
    de Marsac, N.T., Houmard, J., 1993. Adaptation of cyanobacteria to environmental stimuli: New steps towards molecular mechanisms. FEMS Microbiol. Rev. 10(1-2), 119-189. https://doi.org/10.1016/0378-1097(93)90506-W.
    [9]
    Donchyts, G., Winsemius, H., Baart, F., Dahm, R., Schellekens, J., Gorelick, N., Iceland, C., Schmeier, S., 2022. High-resolution surface water dynamics in Earth's small and medium-sized reservoirs. Sci. Rep. 12, 13776. https://doi.org/10.1038/s41598-022-17074-6.
    [10]
    Ficklin, D.L., Hannah, D.M., Wanders, N., Dugdale, S.J., England, J., Klaus, J., Kelleher, C., Khamis, K., Charlton, M.B., 2023. Rethinking river water temperature in a changing, human-dominated world. Nat. Water 1, 125-128. https://doi.org/10.1038/s44221-023-00027-2.
    [11]
    Gao, Y., Zhang, W., Li, Y., 2021. Microbial community coalescence: Does it matter in the three gorges reservoir? Water Res. 205, 117638. https://doi.org/10.1016/j.watres.2021.117638.
    [12]
    He, J., Tan, X., Yanxia, N., Ma, L., Liu, J., Lu, X., Mo, J., Leloup, J., Nunan, N., Ye, Q., Shen, W., 2023. Distinct responses of abundant and rare soil bacteria to nitrogen addition in tropical forest soils. Microbiol. Spectr. 11,-e0300322. https://doi.org/10.1128/spectrum.03003-22.
    [13]
    Jalil, A., Li, Y., Du, W., Wang, J., Gao, X., Wang, W., Acharya, K., 2017. Wind-induced flow velocity effects on nutrient concentrations at eastern bay of Lake Taihu, China. Environ. Sci. Pollut. Res. 24, 17900-17911. https://doi.org/10.1007/s11356-017-9374-x.
    [14]
    Jia, X., Dini-Andreote, F., Falcão Salles, J., 2018. Community assembly processes of the microbial rare biosphere. Trends Microbiol. 26(6), 738-747. https://doi.org/10.1016/j.tim.2018.02.011.
    [15]
    Jiao, S., Luo, Y., Lu, M., Xiao, X., Lin, Y., Chen, W., Wei, G., 2017. Distinct succession patterns of abundant and rare bacteria in temporal microcosms with pollutants. Environ. Pollut. 225, 497-505. https://doi.org/10.1016/j.envpol.2017.03.015.
    [16]
    Jiao, S., Chen, W., Wang, J., Du, N., Li, Q., Wei, G., 2018. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome 6, 146. https://doi.org/10.1186/s40168-018-0526-0.
    [17]
    Li, L., Lin, Q., Li, X., Li, T., He, X., Li, D., Tao, Y., 2019. Dynamics and potential roles of abundant and rare subcommunities in the bioremediation of cadmium-contaminated paddy soil by Pseudomonas chenduensis. Appl. Microbiol. Biotechnol. 103, 8203-8214. https://doi.org/10.1007/s00253-019-10059-y.
    [18]
    Li, X., Yang, T., Mbadinga, S.M., Liu, J., Yang, S., Gu, J., Mu, B., 2017. Responses of microbial community composition to temperature gradient and carbon steel corrosion in production water of petroleum reservoir. Front. Microbiol. 8, 2379. https://doi.org/10.3389/fmicb.2017.02379.
    [19]
    Li, Y., Hu, C., 2021. Biogeographical patterns and mechanisms of microbial community assembly that underlie successional biocrusts across northern China. npj Biofilms Microbiomes 7, 15. https://doi.org/10.1038/s41522-021-00188-6.
    [20]
    Liu, R., Wang, L., Liu, Q., Wang, Z., Li, Z., Fang, J., Zhang, L., Luo, M., 2018. Depth-resolved distribution of particle-attached and free-living bacterial communities in the water column of the New Britain Trench. Front. Microbiol. 9, 625. https://doi.org/10.3389/fmicb.2018.00625.
    [21]
    Liu, W., Liu, L., Yang, X., Deng, M., Wang, Z., Wang, P., Yang, S., Li, P., Peng, Z., Yang, L., Jiang, L., 2021. Long-term nitrogen input alters plant and soil bacterial, but not fungal beta diversity in a semiarid grassland. Global Change Biol. 27, 3939-3950. https://doi.org/10.1111/gcb.15681.
    [22]
    Logares, R., Tesson, S.V.M., Canbäck, B., Pontarp, M., Hedlund, K., Rengefors, K., 2018. Contrasting prevalence of selection and drift in the community structuring of bacteria and microbial eukaryotes. Environ. Microbiol. 20(6), 2231-2240. https://doi.org/10.1111/1462-2920.14265.
    [23]
    Lynch, M., Neufeld, J., 2015. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217-229. https://doi.org/10.1038/nrmicro3400.
    [24]
    Mo, Y., Zhang, W., Yang, J., Lin, Y., Yu, Z., Lin, S., 2018. Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. ISME J. 12, 2198-2210. https://doi.org/10.1038/s41396-018-0153-6.
    [25]
    Nuccio, E.E., Anderson-Furgeson, J., Estera, K.Y., de Valpine, P., Brodie, E.L., Firestone, M.K., 2016. Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass. Ecology 97, 1307-1318. https://doi.org/10.1890/15-0882.1.
    [26]
    Ofit ‚eru, I.D., Lunn, M., Curtis, T.P., Wells, G.F., Criddle, C.S., Francis, C.A., Sloan, W.T., 2010. Combined niche and neutral effects in a microbial wastewater treatment community. Proc. Natl. Acad. Sci. 107, 15345-15350. https://doi.org/10.1073/pnas.1000604107.
    [27]
    Pierangeli, G.M.F., Domingues, M.R., Choueri, R.B., Hanisch, W.S., Gregoracci, G.B., Benassi, R.F., 2022. Spatial variation and environmental parameters affecting the abundant and rare communities of bacteria and archaea in the sediments of tropical urban reservoirs. Microb. Ecol. 86, 297-310. https://doi.org/10.1007/s00248-022-02047-z.
    [28]
    Qin, Z., 2022. Responses of abundant and rare prokaryotic taxa in a controlled organic contaminated site subjected to vertical pollution-induced disturbances. Sci. Total Environ. 853, 158625. https://doi.org/10.1016/j. scitotenv.2022.158625.
    [29]
    Redmond, M.C., Valentine, D.L., 2012. Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proc. Natl. Acad. Sci. 109, 20292-20297. https://doi.org/10.1073/pnas.1108756108.
    [30]
    Ruiz-González, C., Proia, L., Ferrera, I., Gasol, J.M., Sabater, S., 2013. Effects of large river dam regulation on bacterioplankton community structure. FEMS Microbiol. Ecol. 84(2), 316-331. https://doi.org/10.1111/1574-6941.12063.
    [31]
    She, Z., Pan, X., Yue, Z., Shi, X., Gao, Y., Wang, S., Chuai, X., Wang, J., 2023. Contrasting prokaryotic and eukaryotic community assembly and species coexistence in acid mine drainage-polluted waters. Sci. Total Environ. 856, 158954. https://doi.org/10.1016/j.scitotenv.2022.158954.
    [32]
    Shen, C., Gunina, A., Luo, Y., Wang, J., He, J., Kuzyakov, Y., Hemp, A., Classen, A.T., Ge, Y., 2020. Contrasting patterns and drivers of soil bacterial and fungal diversity across a mountain gradient. Environ. Microbiol. 22(8), 3287-3301. https://doi.org/10.1111/1462-2920.15090.
    [33]
    Si, X., Zhao, Y., Chen, C., Ren, P., Zeng, D., Wu, L., Ding, P., 2017. Betadiversity partitioning: Methods, applications and perspectives. Biodivers. Sci. 25(5), 464-480. https://doi.org/10.17520/biods.2017024.
    [34]
    Sol, D., Trisos, C., Múrria, C., Jeliazkov, A., González-Lagos, C., Pigot, A.L., Ricotta, C., Swan, C.M., Tobias, J.A., Pavoine, S., 2020. The worldwide impact of urbanisation on avian functional diversity. Ecol. Lett. 23(6), 962-972. https://doi.org/10.1111/ele.13495.
    [35]
    Stegen, J.C., Lin, X., Konopka, A.E., Fredrickson, J.K., 2012. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 6(9), 1653-1664. https://doi.org/10.1038/ismej.2012.22.
    [36]
    Thompson, L.R., Williams, G.J., Haroon, M.F., Shibl, A., Larsen, P., Shorenstein, J., Knight, R., Stingl, U., 2017. Metagenomic covariation along densely sampled environmental gradients in the Red Sea. ISME J. 11(1), 138-151. https://doi.org/10.1038/ismej.2016.99.
    [37]
    Wan, W., Grossart, H., He, D., Liu, W., Wang, S., Yang, Y., 2023. Differentiation strategies for planktonic bacteria and eukaryotes in response to aggravated algal blooms in urban lakes. iMeta 2(1), e84. https://doi.org/10.1002/imt2.84.
    [38]
    Wang, J., Huang, M., Wang, Q., Sun, Y., Zhao, Y., Huang, Y., 2020a. LDPE microplastics significantly alter the temporal turnover of soil microbial communities. Sci. Total Environ. 726, 138682. https://doi.org/10.1016/j.scitotenv.2020.138682.
    [39]
    Wang, Q., Chen, J., Qi, W., Wang, D., Lin, H., Wu, X., Wang, D., Bai, Y., Qu, J., 2023. Dam construction alters planktonic microbial predator‒prey communities in the urban reaches of the Yangtze River. Water Res. 230, 119575. https://doi.org/10.1016/j.watres.2023.119575.
    [40]
    Wang, W., Yi, Y.J., Yang, Y., Zhou, Y., Zhang, S., Wang, X., Yang, Z., 2020b. Impact of anthropogenic activities on the sediment microbial communities of Baiyangdian shallow lake. Int. J. Sediment Res. 35(2), 180-192. https://doi.org/10.1016/j.ijsrc.2019.10.006.
    [41]
    Wang, X., Wiegand, T., Anderson-Teixeira, K.J., Bourg, N.A., Hao, Z., Howe, R., Jin, G., Orwig, D.A., Spasojevic, M.J., Wang, S., et al., 2018. Ecological drivers of spatial community dissimilarity, species replacement and species nestedness across temperate forests. Global Ecol. Biogeogr. 27(5), 581-592. https://doi.org/10.1111/geb.12719.
    [42]
    Wang, X., Wang, P.F., Wang, C., Chen, J., Hu, B., Liu, S., Yuan, Q.S., 2021. Distinct strategies of abundant and rare bacterioplankton in riverer-servoir system: Evidence from a 2800 km plateau river. Environ. Res. 199, 111418. https://doi.org/10.1016/j.envres.2021.111418.
    [43]
    Wu, K., Zhao, W., Li, M., Picazo, F., Soininen, J., Shen, J., Zhu, L., Cheng, X., Wang, J., 2020. Taxonomic dependency of beta diversity components in benthic communities of bacteria, diatoms and chironomids along a waterdepth gradient. Sci. Total Environ. 741, 140462. https://doi.org/10.1016/j.scitotenv.2020.140462.
    [44]
    Xin, S., Liang, Y., Peng, W., Song, A., Jin, Z., Zhu, M., Li, Q., 2018. Relationship between the bacterial abundance and production with environmental factors in a subtropical karst reservoir. Environ. Sci. 39, 5647-5656. https://doi.org/10.13227/j.hjkx.201804227.
    [45]
    Xin, Y., Zhang, J., Lu, T., Wei, Y., Shen, P., 2023. Response of prokaryotic, eukaryotic and algal communities to heavy rainfall in a reservoir supplied with reclaimed water. J. Environ. Manag. 334, 117394. https://doi.org/10.1016/j.jenvman.2023.117394.
    [46]
    Xu, S., Liu, Y., Zhang, Z., Xu, Y., Qi, Z., 2022. Distributional pattern of bacteria, protists, and diatoms in ocean according to water depth in the Northern South China Sea. Microbiol. Spectr. 10,-e02759-21. https://doi.org/10.1128/spectrum.02759-21.
    [47]
    Xue, Y., Chen, H., Yang, J.R., Liu, M., Huang, B., Yang, J., 2018. Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. ISME J. 12(9), 2263-2277. https://doi.org/10.1038/s41396-018-0159-0.
    [48]
    Yang, H., Wang, Y., Wang, J., Xia, Y., 2021. Effects of environmental filtering and dispersal limitation on the b-diversity of plant communities in the south fringe of Kumtag Desert. J. Desert Res. 41, 147-154 (in Chinese). https://doi.org/10.7522/j.issn.1000-694X.2020.00129.
    [49]
    Yang, Y., Cheng, K., Li, K., Jin, Y., He, X., 2022. Deciphering the diversity patterns and community assembly of rare and abundant bacterial communities in a wetland system. Sci. Total Environ. 838, 156334. https://doi.org/10.1016/j.scitotenv.2022.156334.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (18) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return