Volume 18 Issue 3
Sep.  2025
Turn off MathJax
Article Contents
Davide Palma, Kevin U. Antela, Alessandra Bianco Prevot, M. Luisa Cervera, Angel Morales-Rubio, Roberto Sáez-Hernández. 2025: Artificial neural networks applied to photo-Fenton process: An innovative approach to wastewater treatment. Water Science and Engineering, 18(3): 324-334. doi: 10.1016/j.wse.2025.04.005
Citation: Davide Palma, Kevin U. Antela, Alessandra Bianco Prevot, M. Luisa Cervera, Angel Morales-Rubio, Roberto Sáez-Hernández. 2025: Artificial neural networks applied to photo-Fenton process: An innovative approach to wastewater treatment. Water Science and Engineering, 18(3): 324-334. doi: 10.1016/j.wse.2025.04.005

Artificial neural networks applied to photo-Fenton process: An innovative approach to wastewater treatment

doi: 10.1016/j.wse.2025.04.005
  • Received Date: 2024-10-25
  • Accepted Date: 2025-03-28
  • Available Online: 2025-10-15
  • Artificial intelligence (AI) is a revolutionizing problem-solver across various domains, including scientific research. Its application to chemical processes holds remarkable potential for rapid optimization of protocols and methods. A notable application of AI is in the photo-Fenton degradation of organic compounds. Despite the high novelty and recent surge of interest in this area, a comprehensive synthesis of existing literature on AI applications in the photo-Fenton process is lacking. This review aims to bridge this gap by providing an in-depth summary of the state-of-the-art use of artificial neural networks (ANN) in the photo-Fenton process, with the goal of aiding researchers in the water treatment field to identify the most crucial and relevant variables. It examines the types and architectures of ANNs, input and output variables, and the efficiency of these networks. The findings reveal a rapidly expanding field with increasing publications highlighting AI's potential to optimize the photo-Fenton process. This review also discusses the benefits and drawbacks of using ANNs, emphasizing the need for further research to advance this promising area.

     

  • loading
  • [1]
    Ali, Y., Chakrabarti, T., Shreemali, J., Koralkar, N.V., Kumar, R., Satpathy, S., Chakrabarti, P., Poddar, S., Pattanayak, S.K., Elngar, A.A., et al., 2024. A machine learning based prediction of reaction parameters on reaction kinetics for treatment of industrial wastewater. Desalination Water Treat. 319, 100458. https://doi.org/10.1016/j.dwt.2024.100458.
    [2]
    Amorim, N.D.O., do Nascimento, G.E., Charamba, L.V.C., Santana, R.M.R., da Silva, P.M., Napoleão, T.H., Napoleão, D.C., 2020. Direct red 83 textile dye degradation using photoperoxidation and photo-Fenton: Kinetic studies, toxicity and neural networks modeling. Cienc. Nat. 42, e41. https://doi.org/10.5902/2179460X41251.
    [3]
    Bassam, A., Salgado-Tránsito, I., Oller, I., Santoyo, E., Jiménez, A.E., Hernandez, J.A., Zapata, A., Malato, S., 2012. Optimal performance assessment for a photo-Fenton degradation pilot plant driven by solar energy using artificial neural networks. Int. J. Energy Res. 36, 1314-1324. https://doi.org/10.1002/er.1906.
    [4]
    Bhaskar, S., Manu, B., Sreenivasa, M.Y., Manoj, A., 2024. Synthesis of plantbased biogenic jarosite nanoparticles using Azadirachta indica and Eucalyptus gunni leaf extracts and its application in Fenton degradation of dicamba. Water Sci. Eng. 17(2), 157-165. https://doi.org/10.1016/j.wse.2023.08.003.
    [5]
    Bouizzar, S., Berkani, M., 2024. Optimization of efficient low-cost Fenton-like system for tribenuron-methyl degradation in water: Intermediates identi-fication and microalgal bioassay. J. Water Proc. Eng. 64, 105584. https://doi.org/10.1016/j.jwpe.2024.105584.
    [6]
    Bugshan, N., Khalil, I., Moustafa, N., Almashor, M., Abuadbba, A., 2022. Radial basis function network with differential privacy. Future Gener. Comput. Syst. 127, 473-486. https://doi.org/10.1016/j.future.2021.09.013.
    [7]
    Cabrera Reina, A., Miralles-Cuevas, S., Cornejo, L., Pomares, L., Polo, J., Oller, I., Malato, S., 2020. The influence of location on solar photo-Fenton: Process performance, photoreactor scaling-up and treatment cost. Renew. Energy 145, 1890-1900. https://doi.org/10.1016/j.renene.2019.07.113.
    [8]
    Cüce, H., Özçelik, D., 2022. Application of machine learning (ML) and artificial intelligence (AI)-based tools for modelling and enhancing sus-tainable optimization of the classical/photo-Fenton processes for the landfill leachate treatment. Sustainability 14, 11261. https://doi.org/10.3390/su141811261.
    [9]
    de Moraes, N.F.S., Santana, R.M.R., Gomes, R.K.M., Santos Júnior, S.G., de Lucena, A.L.A., Zaidan, L.E.M.C., Napoleão, D.C., 2021. Performance verification of different advanced oxidation processes in the degradation of the dye acid violet 17: Reaction kinetics, toxicity and degradation pre-diction by artificial neural networks. Chem. Pap. 75, 539-552. https://doi.org/10.1007/s11696-020-01325-9.
    [10]
    Dhamorikar, R.S., Lade, V.G., Kewalramani, P.V., Bindwal, A.B., 2024. Review on integrated advanced oxidation processes for water and wastewater treatment. J. Ind. Eng. Chem. 138, 104-122. https://doi.org/10.1016/j.jiec.2024.04.037.
    [11]
    Gholizadeh, A.M., Zarei, M., Ebratkhahan, M., Hasanzadeh, A., 2021. Phe-nazopyridine degradation by electro-Fenton process with magnetite nanoparticles-activated carbon cathode, artificial neural networks modeling. J. Environ. Chem. Eng. 9, 104999. https://doi.org/10.1016/j.jece.2020.104999.
    [12]
    Hajiahmadi, M., Zarei, M., Khataee, A., 2022. An effective natural mineral-catalyzed heterogeneous electro-Fenton method for degradation of an antineoplastic drug: Modeling by a neural network. Chemosphere 291, 132810. https://doi.org/10.1016/j.chemosphere.2021.132810.
    [13]
    Hosseinzadeh, A., Najafpoor, A.A., Navaei, A.A., Zhou, J.L., Altaee, A., Ramezanian, N., Dehghan, A., Bao, T., Yazdani, M., 2021. Improving formaldehyde removal from water and wastewater by Fenton, photoFenton and ozonation/Fenton processes through optimization and modeling. Water 13, 2754. https://doi.org/10.3390/w13192754.
    [14]
    Joy, V.M., Feroz, S., Dutta, S., 2022. Artificial intelligence-based multi-objective optimization of reverse osmosis desalination pretreatment using a hybrid ZnO-immobilized/photo-Fenton process. J. Chemometr. 36, e3434. https://doi.org/10.1002/cem.3434.
    [15]
    Khatri, N., Khatri, K.K., Sharma, A., 2019. Prediction of effluent quality in ICEAS-sequential batch reactor using feedforward artificial neural network. Water Sci. Technol. 80, 213-222. https://doi.org/10.2166/ wst.2019.257.
    [16]
    Khatri, N., Vyas, A.K., Abdul-Qawy, A.S.H., Rene, E.R., 2023. Artificial neural network based models for predicting the effluent quality of a combined upflow anaerobic sludge blanket and facultative pond: Performance evaluation and comparison of different algorithms. Environ. Res. 217, 114843. https://doi.org/10.1016/j.envres.2022.114843.
    [17]
    Krogh, A., 2008. What are artificial neural networks? Nat. Biotechnol. 26, 195-197. https://doi.org/10.1038/nbt1386.
    [18]
    Krovvidy, S., Wee, W.G., Summers, R.S., Coleman, J.J., 1991. An AI approach for wastewater treatment systems. Appl. Intell. 1, 247-261. https://doi.org/ 10.1007/BF00118999.
    [19]
    Li, Y., Cheng, H., 2021. Chemical kinetic modeling of organic pollutant degradation in Fenton and solar photo-Fenton processes. J. Taiwan Inst. Chem. Eng. 123, 175-184. https://doi.org/10.1016/j.jtice.2021.05.011.
    [20]
    Lumbaque, E.C., da Silva, B.A., Böck, F.C., Helfer, G.A., Ferrão, M.F., Sirtori, C., 2019. Total dissolved iron and hydrogen peroxide determination using the PhotoMetrixPRO application: A portable colorimetric analysis tool for controlling important conditions in the solar photo-fenton process. J. Hazard. Mater. 378, 120740. https://doi.org/10.1016/j.jhazmat.2019.06.017.
    [21]
    Moshkbar-Bakhshayesh, K., 2019. Development of a modular system for estimating attenuation coefficient of gamma radiation: Comparative study of different learning algorithms of cascade feed-forward neural network. J. Inst. Met. 14, P10010. https://doi.org/10.1088/1748-0221/14/10/P10010.
    [22]
    Mousavi, S.A., Vasseghian, Y., Bahadori, A., 2020. Evaluate the performance of Fenton process for the removal of methylene blue from aqueous solution: Experimental, neural network modeling and optimization. Environ. Prog. Sustain. Energy 39(2), 13126. https://doi.org/10.1002/ep.13126.
    [23]
    Narayanan, D., Bhat, M., Samuel Paul, N.R., Khatri, N., Saroliya, A., 2024. Artificial intelligence driven advances in wastewater treatment: Evaluating techniques for sustainability and efficacy in global facilities. Desalination Water Treat. 320, 100618. https://doi.org/10.1016/j.dwt.2024.100618.
    [24]
    Palma, D., Bianco Prevot, A., Brigante, M., Fabbri, D., Magnacca, G., Richard, C., Mailhot, G., Nistic o, R., 2018. New insights on the photodegradation of caffeine in the presence of bio-based substancesemagnetic iron oxide hybrid nanomaterials. Materials 11, 1084. https://doi.org/10.3390/ma11071084.
    [25]
    Sabour, M.R., Amiri, A., 2017. Comparative study of ANN and RSM for simultaneous optimization of multiple targets in Fenton treatment of landfill leachate. Waste Manag. 65, 54-62. https://doi.org/10.1016/j.wasman.2017.03.048.
    [26]
    Safeer, S., Pandey, R.P., Rehman, B., Safdar, T., Ahmad, I., Hasan, S.W., Ullah, A., 2022. A review of artificial intelligence in water purification and wastewater treatment: Recent advancements. J. Water Proc. Eng. 49, 102974. https://doi.org/10.1016/j.jwpe.2022.102974.
    [27]
    Santana, R.M.R., Napoleão, D.C., dos Santos Junior, S.G., Gomes, R.K.M., de Moraes, N.F.S., Zaidan, L.E.M.C., Elihimas, D.R.M., do Nascimento, G.E., Duarte, M.M.M.B., 2021. Photo-Fenton process under sunlight irradiation for textile wastewater degradation: Monitoring of residual hydrogen peroxide by spectrophotometric method and modeling artificial neural network models to predict treatment. Chem. Pap. 75, 2305-2316. https://doi.org/10.1007/s11696-020-01449-y.
    [28]
    Sarı, B., Türkes‚, S., Güney, H., Keskinkan, O., 2023. The utilization and modeling of photo-Fenton process as a single unit in textile wastewater treatment. Clean Soil Air Water 51, 2100328. https://doi.org/10.1002/clen.202100328.
    [29]
    Senthil Rathi, B., Senthil Kumar, P., Sanjay, S., Prem Kumar, M., Rangasamy, G., 2024. Artificial intelligence integration in conventional wastewater treatment techniques: Techno-economic evaluation, recent progress and its future direction. Int. J. Environ. Sci. Technol. 22, 633-658. https://doi.org/10.1007/s13762-024-05725-2.
    [30]
    Shaik, N.B., Pedapati, S.R., Taqvi, S.A.A., Othman, A.R., Dzubir, F.A.A., 2020. A feed-forward back propagation neural network approach to predict the life condition of crude oil pipeline. Processes 8, 661. https://doi.org/10.3390/pr8060661.
    [31]
    Shokry, A., Vicente, P., Escudero, G., Pérez-Moya, M., Graells, M., Espuña, A., 2018. Data-driven soft-sensors for online monitoring of batch processes with different initial conditions. Comput. Chem. Eng. 118, 159-179. https://doi.org/10.1016/j.compchemeng.2018.07.014.
    [32]
    Singa, P.K., Isa, M.H., Sivaprakash, B., Ho, Y.C., Lim, J.W., Rajamohan, N., 2023. PAHs remediation from hazardous waste landfill leachate using fenton, photoFenton and electro-Fenton oxidation processes - Performance evaluation under optimized conditions using RSM and ANN. Environ. Res. 231(2), 116191. https://doi.org/10.1016/j.envres.2023.116191.
    [33]
    Talwar, S., Verma, A.K., Sangal, V.K., 2019. Modeling and optimization of fixed mode dual effect (photocatalysis and photo-Fenton) assisted metronidazole degradation using ANN coupled with genetic algorithm. J. Environ. Manag. 250, 109428. https://doi.org/10.1016/j.jenvman.2019.109428.
    [34]
    Tolba, A., Gar Alalm, M., Elsamadony, M., Mostafa, A., Afify, H., Dionysiou, D.D., 2019. Modeling and optimization of heterogeneous Fenton-like and photo-Fenton processes using reusable Fe3O4-MWCNTs. Process Saf. Environ. Prot. 128, 273-283. https://doi.org/10.1016/j.psep.2019.06.011.
    [35]
    Turkes, S., Güney, H., Mezarci€ oz, S., Sari, B., Tetik, S.S., 2024. Textile wastewater: COD removal via Box-eBehnken design. Fenton method, and machine learning integration for sustainability. International Journal of Clothing Science and Technology. https://doi.org/10.1108/IJCST-02-2024-0045 (in press).
    [36]
    Wang, J., Wang, S., 2020. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chem. Eng. J. 401, 126158. https://doi.org/10.1016/j.cej.2020.126158.
    [37]
    Wang, J., Wang, S., 2021. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants. Chem. Eng. J. 411, 128392. https://doi.org/10.1016/j.cej.2020.128392.
    [38]
    Wang, Y., Cheng, Y., Liu, H., Guo, Q., Dai, C., Zhao, M., Liu, D., 2023. A review on applications of artificial intelligence in wastewater treatment. Sustainability 15, 13557. https://doi.org/10.3390/su151813557.
    [39]
    Zhao, L., Dai, T., Qiao, Z., Sun, P., Hao, J., Yang, Y., 2020. Application of artificial intelligence to wastewater treatment: A bibliometric analysis and systematic review of technology, economy, management, and wastewater reuse. Process Saf. Environ. Prot. 133, 169-182. https://doi.org/10.1016/j.psep.2019.11.014.
    [40]
    Zhao, Y., Liu, M., Xu, X., Li, C., Cheng, J., Wang, Z., Wang, D., Qu, W., Li, S., 2023. Photo-Fenton degradation process of styrene in nitrogen-sealed storage tank. Toxics 11, 26. https://doi.org/10.3390/toxics11010026.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (10) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return