Citation: | Davide Palma, Kevin U. Antela, Alessandra Bianco Prevot, M. Luisa Cervera, Angel Morales-Rubio, Roberto Sáez-Hernández. 2025: Artificial neural networks applied to photo-Fenton process: An innovative approach to wastewater treatment. Water Science and Engineering, 18(3): 324-334. doi: 10.1016/j.wse.2025.04.005 |
[1] |
Ali, Y., Chakrabarti, T., Shreemali, J., Koralkar, N.V., Kumar, R., Satpathy, S., Chakrabarti, P., Poddar, S., Pattanayak, S.K., Elngar, A.A., et al., 2024. A machine learning based prediction of reaction parameters on reaction kinetics for treatment of industrial wastewater. Desalination Water Treat. 319, 100458. https://doi.org/10.1016/j.dwt.2024.100458.
|
[2] |
Amorim, N.D.O., do Nascimento, G.E., Charamba, L.V.C., Santana, R.M.R., da Silva, P.M., Napoleão, T.H., Napoleão, D.C., 2020. Direct red 83 textile dye degradation using photoperoxidation and photo-Fenton: Kinetic studies, toxicity and neural networks modeling. Cienc. Nat. 42, e41. https://doi.org/10.5902/2179460X41251.
|
[3] |
Bassam, A., Salgado-Tránsito, I., Oller, I., Santoyo, E., Jiménez, A.E., Hernandez, J.A., Zapata, A., Malato, S., 2012. Optimal performance assessment for a photo-Fenton degradation pilot plant driven by solar energy using artificial neural networks. Int. J. Energy Res. 36, 1314-1324. https://doi.org/10.1002/er.1906.
|
[4] |
Bhaskar, S., Manu, B., Sreenivasa, M.Y., Manoj, A., 2024. Synthesis of plantbased biogenic jarosite nanoparticles using Azadirachta indica and Eucalyptus gunni leaf extracts and its application in Fenton degradation of dicamba. Water Sci. Eng. 17(2), 157-165. https://doi.org/10.1016/j.wse.2023.08.003.
|
[5] |
Bouizzar, S., Berkani, M., 2024. Optimization of efficient low-cost Fenton-like system for tribenuron-methyl degradation in water: Intermediates identi-fication and microalgal bioassay. J. Water Proc. Eng. 64, 105584. https://doi.org/10.1016/j.jwpe.2024.105584.
|
[6] |
Bugshan, N., Khalil, I., Moustafa, N., Almashor, M., Abuadbba, A., 2022. Radial basis function network with differential privacy. Future Gener. Comput. Syst. 127, 473-486. https://doi.org/10.1016/j.future.2021.09.013.
|
[7] |
Cabrera Reina, A., Miralles-Cuevas, S., Cornejo, L., Pomares, L., Polo, J., Oller, I., Malato, S., 2020. The influence of location on solar photo-Fenton: Process performance, photoreactor scaling-up and treatment cost. Renew. Energy 145, 1890-1900. https://doi.org/10.1016/j.renene.2019.07.113.
|
[8] |
Cüce, H., Özçelik, D., 2022. Application of machine learning (ML) and artificial intelligence (AI)-based tools for modelling and enhancing sus-tainable optimization of the classical/photo-Fenton processes for the landfill leachate treatment. Sustainability 14, 11261. https://doi.org/10.3390/su141811261.
|
[9] |
de Moraes, N.F.S., Santana, R.M.R., Gomes, R.K.M., Santos Júnior, S.G., de Lucena, A.L.A., Zaidan, L.E.M.C., Napoleão, D.C., 2021. Performance verification of different advanced oxidation processes in the degradation of the dye acid violet 17: Reaction kinetics, toxicity and degradation pre-diction by artificial neural networks. Chem. Pap. 75, 539-552. https://doi.org/10.1007/s11696-020-01325-9.
|
[10] |
Dhamorikar, R.S., Lade, V.G., Kewalramani, P.V., Bindwal, A.B., 2024. Review on integrated advanced oxidation processes for water and wastewater treatment. J. Ind. Eng. Chem. 138, 104-122. https://doi.org/10.1016/j.jiec.2024.04.037.
|
[11] |
Gholizadeh, A.M., Zarei, M., Ebratkhahan, M., Hasanzadeh, A., 2021. Phe-nazopyridine degradation by electro-Fenton process with magnetite nanoparticles-activated carbon cathode, artificial neural networks modeling. J. Environ. Chem. Eng. 9, 104999. https://doi.org/10.1016/j.jece.2020.104999.
|
[12] |
Hajiahmadi, M., Zarei, M., Khataee, A., 2022. An effective natural mineral-catalyzed heterogeneous electro-Fenton method for degradation of an antineoplastic drug: Modeling by a neural network. Chemosphere 291, 132810. https://doi.org/10.1016/j.chemosphere.2021.132810.
|
[13] |
Hosseinzadeh, A., Najafpoor, A.A., Navaei, A.A., Zhou, J.L., Altaee, A., Ramezanian, N., Dehghan, A., Bao, T., Yazdani, M., 2021. Improving formaldehyde removal from water and wastewater by Fenton, photoFenton and ozonation/Fenton processes through optimization and modeling. Water 13, 2754. https://doi.org/10.3390/w13192754.
|
[14] |
Joy, V.M., Feroz, S., Dutta, S., 2022. Artificial intelligence-based multi-objective optimization of reverse osmosis desalination pretreatment using a hybrid ZnO-immobilized/photo-Fenton process. J. Chemometr. 36, e3434. https://doi.org/10.1002/cem.3434.
|
[15] |
Khatri, N., Khatri, K.K., Sharma, A., 2019. Prediction of effluent quality in ICEAS-sequential batch reactor using feedforward artificial neural network. Water Sci. Technol. 80, 213-222. https://doi.org/10.2166/ wst.2019.257.
|
[16] |
Khatri, N., Vyas, A.K., Abdul-Qawy, A.S.H., Rene, E.R., 2023. Artificial neural network based models for predicting the effluent quality of a combined upflow anaerobic sludge blanket and facultative pond: Performance evaluation and comparison of different algorithms. Environ. Res. 217, 114843. https://doi.org/10.1016/j.envres.2022.114843.
|
[17] |
Krogh, A., 2008. What are artificial neural networks? Nat. Biotechnol. 26, 195-197. https://doi.org/10.1038/nbt1386.
|
[18] |
Krovvidy, S., Wee, W.G., Summers, R.S., Coleman, J.J., 1991. An AI approach for wastewater treatment systems. Appl. Intell. 1, 247-261. https://doi.org/ 10.1007/BF00118999.
|
[19] |
Li, Y., Cheng, H., 2021. Chemical kinetic modeling of organic pollutant degradation in Fenton and solar photo-Fenton processes. J. Taiwan Inst. Chem. Eng. 123, 175-184. https://doi.org/10.1016/j.jtice.2021.05.011.
|
[20] |
Lumbaque, E.C., da Silva, B.A., Böck, F.C., Helfer, G.A., Ferrão, M.F., Sirtori, C., 2019. Total dissolved iron and hydrogen peroxide determination using the PhotoMetrixPRO application: A portable colorimetric analysis tool for controlling important conditions in the solar photo-fenton process. J. Hazard. Mater. 378, 120740. https://doi.org/10.1016/j.jhazmat.2019.06.017.
|
[21] |
Moshkbar-Bakhshayesh, K., 2019. Development of a modular system for estimating attenuation coefficient of gamma radiation: Comparative study of different learning algorithms of cascade feed-forward neural network. J. Inst. Met. 14, P10010. https://doi.org/10.1088/1748-0221/14/10/P10010.
|
[22] |
Mousavi, S.A., Vasseghian, Y., Bahadori, A., 2020. Evaluate the performance of Fenton process for the removal of methylene blue from aqueous solution: Experimental, neural network modeling and optimization. Environ. Prog. Sustain. Energy 39(2), 13126. https://doi.org/10.1002/ep.13126.
|
[23] |
Narayanan, D., Bhat, M., Samuel Paul, N.R., Khatri, N., Saroliya, A., 2024. Artificial intelligence driven advances in wastewater treatment: Evaluating techniques for sustainability and efficacy in global facilities. Desalination Water Treat. 320, 100618. https://doi.org/10.1016/j.dwt.2024.100618.
|
[24] |
Palma, D., Bianco Prevot, A., Brigante, M., Fabbri, D., Magnacca, G., Richard, C., Mailhot, G., Nistic o, R., 2018. New insights on the photodegradation of caffeine in the presence of bio-based substancesemagnetic iron oxide hybrid nanomaterials. Materials 11, 1084. https://doi.org/10.3390/ma11071084.
|
[25] |
Sabour, M.R., Amiri, A., 2017. Comparative study of ANN and RSM for simultaneous optimization of multiple targets in Fenton treatment of landfill leachate. Waste Manag. 65, 54-62. https://doi.org/10.1016/j.wasman.2017.03.048.
|
[26] |
Safeer, S., Pandey, R.P., Rehman, B., Safdar, T., Ahmad, I., Hasan, S.W., Ullah, A., 2022. A review of artificial intelligence in water purification and wastewater treatment: Recent advancements. J. Water Proc. Eng. 49, 102974. https://doi.org/10.1016/j.jwpe.2022.102974.
|
[27] |
Santana, R.M.R., Napoleão, D.C., dos Santos Junior, S.G., Gomes, R.K.M., de Moraes, N.F.S., Zaidan, L.E.M.C., Elihimas, D.R.M., do Nascimento, G.E., Duarte, M.M.M.B., 2021. Photo-Fenton process under sunlight irradiation for textile wastewater degradation: Monitoring of residual hydrogen peroxide by spectrophotometric method and modeling artificial neural network models to predict treatment. Chem. Pap. 75, 2305-2316. https://doi.org/10.1007/s11696-020-01449-y.
|
[28] |
Sarı, B., Türkes‚, S., Güney, H., Keskinkan, O., 2023. The utilization and modeling of photo-Fenton process as a single unit in textile wastewater treatment. Clean Soil Air Water 51, 2100328. https://doi.org/10.1002/clen.202100328.
|
[29] |
Senthil Rathi, B., Senthil Kumar, P., Sanjay, S., Prem Kumar, M., Rangasamy, G., 2024. Artificial intelligence integration in conventional wastewater treatment techniques: Techno-economic evaluation, recent progress and its future direction. Int. J. Environ. Sci. Technol. 22, 633-658. https://doi.org/10.1007/s13762-024-05725-2.
|
[30] |
Shaik, N.B., Pedapati, S.R., Taqvi, S.A.A., Othman, A.R., Dzubir, F.A.A., 2020. A feed-forward back propagation neural network approach to predict the life condition of crude oil pipeline. Processes 8, 661. https://doi.org/10.3390/pr8060661.
|
[31] |
Shokry, A., Vicente, P., Escudero, G., Pérez-Moya, M., Graells, M., Espuña, A., 2018. Data-driven soft-sensors for online monitoring of batch processes with different initial conditions. Comput. Chem. Eng. 118, 159-179. https://doi.org/10.1016/j.compchemeng.2018.07.014.
|
[32] |
Singa, P.K., Isa, M.H., Sivaprakash, B., Ho, Y.C., Lim, J.W., Rajamohan, N., 2023. PAHs remediation from hazardous waste landfill leachate using fenton, photoFenton and electro-Fenton oxidation processes - Performance evaluation under optimized conditions using RSM and ANN. Environ. Res. 231(2), 116191. https://doi.org/10.1016/j.envres.2023.116191.
|
[33] |
Talwar, S., Verma, A.K., Sangal, V.K., 2019. Modeling and optimization of fixed mode dual effect (photocatalysis and photo-Fenton) assisted metronidazole degradation using ANN coupled with genetic algorithm. J. Environ. Manag. 250, 109428. https://doi.org/10.1016/j.jenvman.2019.109428.
|
[34] |
Tolba, A., Gar Alalm, M., Elsamadony, M., Mostafa, A., Afify, H., Dionysiou, D.D., 2019. Modeling and optimization of heterogeneous Fenton-like and photo-Fenton processes using reusable Fe3O4-MWCNTs. Process Saf. Environ. Prot. 128, 273-283. https://doi.org/10.1016/j.psep.2019.06.011.
|
[35] |
Turkes, S., Güney, H., Mezarci€ oz, S., Sari, B., Tetik, S.S., 2024. Textile wastewater: COD removal via Box-eBehnken design. Fenton method, and machine learning integration for sustainability. International Journal of Clothing Science and Technology. https://doi.org/10.1108/IJCST-02-2024-0045 (in press).
|
[36] |
Wang, J., Wang, S., 2020. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chem. Eng. J. 401, 126158. https://doi.org/10.1016/j.cej.2020.126158.
|
[37] |
Wang, J., Wang, S., 2021. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants. Chem. Eng. J. 411, 128392. https://doi.org/10.1016/j.cej.2020.128392.
|
[38] |
Wang, Y., Cheng, Y., Liu, H., Guo, Q., Dai, C., Zhao, M., Liu, D., 2023. A review on applications of artificial intelligence in wastewater treatment. Sustainability 15, 13557. https://doi.org/10.3390/su151813557.
|
[39] |
Zhao, L., Dai, T., Qiao, Z., Sun, P., Hao, J., Yang, Y., 2020. Application of artificial intelligence to wastewater treatment: A bibliometric analysis and systematic review of technology, economy, management, and wastewater reuse. Process Saf. Environ. Prot. 133, 169-182. https://doi.org/10.1016/j.psep.2019.11.014.
|
[40] |
Zhao, Y., Liu, M., Xu, X., Li, C., Cheng, J., Wang, Z., Wang, D., Qu, W., Li, S., 2023. Photo-Fenton degradation process of styrene in nitrogen-sealed storage tank. Toxics 11, 26. https://doi.org/10.3390/toxics11010026.
|